Insight
is our reward

Publications in Natural Sciences by NOMIS researchers

NOMIS Researcher(s)

Published in

May 19, 2025

Mutations in FUS and TARDBP cause amyotrophic lateral sclerosis (ALS), but the precise mechanisms of selective motor neuron degeneration remain unresolved. To address if pathomechanisms are shared across mutations and related to either gain- or loss-of-function, we performed single-cell RNA sequencing across isogenic induced pluripotent stem cell-derived neuron types, harbouring FUS P525L, FUS R495X, TARDBP M337V mutations or FUS knockout. Transcriptional changes were far more pronounced in motor neurons than interneurons. About 20% of uniquely dysregulated motor neuron transcripts were shared across FUS mutations, half from gain-of-function. Most indicated mitochondrial impairments, with attenuated pathways shared with mutant TARDBP M337V as well as C9orf72-ALS patient motor neurons. Mitochondrial motility was impaired in ALS motor axons, even with nuclear localized FUS mutants, demonstrating shared toxic gain-of-function mechanisms across FUS- and TARDBP-ALS, uncoupled from protein mislocalization. These early mitochondrial dysfunctions unique to motor neurons may affect survival and represent therapeutic targets in ALS.

Research field(s)
Neuroscience, Molecular Biology, Biochemistry & Molecular Biology

NOMIS Researcher(s)

May 14, 2025

Neurodegenerative diseases, such as amyotrophic lateral sclerosis, are often associated with mutations in stress granule proteins. Aberrant stress granule condensate formation is associated with disease, making it a potential target for pharmacological intervention. Here, we identified lipoamide, a small molecule that specifically prevents cytoplasmic condensation of stress granule proteins. Thermal proteome profiling showed that lipoamide stabilizes intrinsically disordered domain-containing proteins, including SRSF1 and SFPQ, which are stress granule proteins necessary for lipoamide activity. SFPQ has redox-state-specific condensate dissolving behavior, which is modulated by the redox-active lipoamide dithiolane ring. In animals, lipoamide ameliorates aging-associated aggregation of a stress granule reporter protein, improves neuronal morphology and recovers motor defects caused by amyotrophic lateral sclerosis-associated FUS and TDP-43 mutants. Thus, lipoamide is a well-tolerated small-molecule modulator of stress granule condensation, and dissection of its molecular mechanism identified a cellular pathway for redox regulation of stress granule formation.

Research field(s)
Neuroscience, Biochemistry & Molecular Biology

NOMIS Researcher(s)

Published in

April 24, 2025

Hole spin qubits are emerging as the workhorse of semiconducting quantum processors because of their large spin-orbit interaction, enabling fast, low-power, all-electric operations. However, this interaction also causes non-uniformities, resulting in site-dependent qubit energies and anisotropies. Although these anisotropies enable single-spin control, if not properly harnessed, they can hinder scalability. Here, we report on microwave-driven singlet-triplet qubits in planar germanium and use them to investigate spin anisotropies. For in-plane magnetic fields, the spins are largely anisotropic and electrically tunable, allowing access to all transitions and coherence times exceeding 3 μs are extracted. For out-of-plane fields they have an isotropic response. Even in this field direction, where the qubit lifetime is strongly affected by nuclear spins, we find 400 ns coherence times. Our work adds a valuable tool to investigate and harness the spin anisotropies, applicable to two-dimensional devices, facilitating the path towards scalable quantum processors.

Research field(s)
Quantum, Microwave, Qubits

NOMIS Researcher(s)

Published in

April 15, 2025
Polyglutamine (polyQ) expansion is associated with pathogenic protein aggregation in neurodegenerative disorders. However, long polyQ tracts are also found in many transcription factors (TFs), such as FOXP2, a TF implicated in human speech. Here, we explore how FOXP2 and other glutamine-rich TFs avoid unscheduled assembly. Throughout interphase, DNA binding, irrespective of sequence specificity, has a solubilizing effect. During mitosis, multiple phosphorylation events promote FOXP2’s eviction from chromatin and supplant the solubilizing function of DNA. Further, human-specific amino acid substitutions linked to the evolution of speech map to a mitotic phospho-patch, the “EVO patch,” and reduce the propensity of the human FOXP2 to assemble. Fusing the pathogenic form of Huntingtin to either a DNA-binding domain, a phosphomimetic variant of this EVO patch, or a negatively charged peptide is sufficient to diminish assembly formation, suggesting that hijacking mechanisms governing solubility of glutamine-rich TFs may offer new strategies for treatment of polyQ expansion diseases.

Research field(s)
Neuroscience, Biochemistry & Molecular Biology, Genetics & Heredity, Evolutionary Biology

NOMIS Researcher(s)

Published in

April 8, 2025

Glacier-fed streams (GFSs) are harsh environments hosting unique, highly specialized communities. Interestingly, glaciers and their GFSs are also present in Earth’s tropical regions, where environmental characteristics contrast with GFS conditions elsewhere. Yet, despite the unique and isolated nature of tropical GFSs, little is known about their inhabitants, even though they may disappear later this century with ongoing climate change. Here, we examined diatom communities from one of the last tropical African GFSs in the Rwenzori Mountains, Uganda, to characterize the composition and diversity of this unique system. Six sediment-associated biofilm samples were collected from two reaches of a stream draining the Mt. Stanley Glacier, and the resident diatom communities were studied morphologically using light and scanning electron microscopy, as well as through the sequencing of amplicons from extracted DNA (18S and rbcL). In general, morphological results agree well with barcoding results, but each individually provides irreplaceable insights. In total, we identify 24 morphotypes utilizing light microscopy, 101 diatom Amplicon Sequence Variants (ASVs) using 18S sequences, and 65 ASVs with rbcL. Across approaches, common genera include AchnanthidiumPsammothidiumNeidiumCymbopleuraEunotia, and Pinnularia. However, only about half of the diversity could be assigned to the species level across methodologies, including several of the most common taxa, indicating a high level of uniqueness. Accordingly, one of the most common taxa encountered is described here as a new species, Neidium rwenzoriense sp. nov. Our results emphasize the Rwenzori Mountains as a global hotspot for endemism, and the novelty of disappearing tropical GFSs as diatom habitats.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

March 24, 2025

As glaciers begin to disappear, technological fixes to slow or halt ice melt are emerging. But regulations are urgently required before these fixes are used widely.

Research field(s)
Conservation Biology, Environmental Sciences

NOMIS Researcher(s)

Published in

March 21, 2025
Microtubules are a hallmark of eukaryotes. Archaeal and bacterial homologs of tubulins typically form homopolymers and non-tubular superstructures. The origin of heterodimeric tubulins assembling into microtubules remains unclear.
Here, we report the discovery of microtubule-forming tubulins in Asgard archaea, the closest known relatives of eukaryotes. These Asgard tubulins (AtubA/B) are closely related to eukaryotic α/β-tubulins and the enigmatic bacterial tubulins BtubA/B. Proteomics of Candidatus Lokiarchaeum ossiferum showed that AtubA/B were highly expressed. Cryoelectron microscopy structures demonstrate that AtubA/B form eukaryote-like heterodimers, which assembled into 5-protofilament bona fide microtubules in vitro. The additional paralog AtubB2 lacks a nucleotide-binding site and competitively displaced AtubB. These AtubA/B2 heterodimers polymerized into 7-protofilament non-canonical microtubules. In a sub-population of Ca. Lokiarchaeum ossiferum cells, cryo-tomography revealed tubular structures, while expansion microscopy identified AtubA/B cytoskeletal assemblies.
Our findings suggest a pre-eukaryotic origin of microtubules and provide a framework for understanding the fundamental principles of microtubule assembly.

Research field(s)
Molecular Biology, Evolutionary Biology, Microbiology

Published in

March 8, 2025

Cell migration is a fundamental process during embryonic development. Most studies in vivo have focused on the migration of cells using the extracellular matrix (ECM) as their substrate for migration. In contrast, much less is known about how cells migrate on other cells, as found in early embryos when the ECM has not yet formed. Here, we show that lateral mesendoderm (LME) cells in the early zebrafish gastrula use the ectoderm as their substrate for migration. We show that the lateral ectoderm is permissive for the animal-pole-directed migration of LME cells, while the ectoderm at the animal pole halts it. These differences in permissiveness depend on the lateral ectoderm being more cohesive than the animal ectoderm, a property controlled by bone morphogenetic protein (BMP) signaling within the ectoderm. Collectively, these findings identify ectoderm tissue cohesion as one critical factor in regulating LME migration during zebrafish gastrulation.

Research field(s)
Molecular Biology, Biophysics

NOMIS Researcher(s)

Published in

March 1, 2025

High kinetic inductance superconductors are gaining increasing interest for the realisation of qubits, amplifiers and detectors. Moreover, thanks to their high impedance, quantum buses made of such materials enable large zero-point fluctuations of the voltage, boosting the coupling rates to spin and charge qubits. However, fully exploiting the potential of disordered or granular superconductors is challenging, as their inductance and, therefore, impedance at high values are difficult to control. Here, we report a reproducible fabrication of granular aluminium resonators by developing a wireless ohmmeter, which allows in situ measurements during film deposition and, therefore, control of the kinetic inductance of granular aluminium films. Reproducible fabrication of circuits with impedances (inductances) exceeding 13 kΩ (1 nH per square) is now possible. By integrating a 7.9 kΩ resonator with a germanium double quantum dot, we demonstrate strong charge-photon coupling with a rate of gc/2π = 566 ± 2 MHz. This broadly applicable method opens the path for novel qubits and high-fidelity, long-distance two-qubit gates.

Research field(s)
Nanoscience & Nanotechnology, Quantum

NOMIS Researcher(s)

Published in

February 19, 2025

The origin of life on Earth required a supply of phosphorus (P) for the synthesis of universal biomolecules. Closed lakes may have accumulated high P concentrations on early Earth. However, it is not clear whether prebiotic P uptake in such settings would then have been sustainable. We show that large closed-basin lakes can combine high P concentrations at steady state with extremely high rates of biological productivity. Our case study is Mono Lake in California, which has close to 1 millimolar dissolved P at steady state despite extremely high rates of biological productivity, in contrast to smaller closed basins where life is scarce. Hence, large closed-basin lakes offer an environment where high rates of prebiotic P productivity can plausibly coexist with high steady-state P concentrations. Such lakes should have readily formed on the heavily cratered and volcanically active surface of early Earth.

Research field(s)
Physics & Astronomy

NOMIS Researcher(s)

February 11, 2025

Recent advancements in superconducting circuits have enabled the experimental study of collective behavior of precisely controlled intermediate-scale ensembles of qubits. In this work, we demonstrate an atomic frequency comb formed by individual artificial atoms strongly coupled to a single resonator mode. We observe periodic microwave pulses that originate from a single coherent excitation dynamically interacting with the multiqubit ensemble. We show that this revival dynamics emerges as a consequence of the constructive and periodic rephasing of the five superconducting qubits forming the vacuum Rabi split comb. In the future, similar devices could be used as a memory with in situ tunable storage time or as an on-chip periodic pulse generator with nonclassical photon statistics.

Research field(s)
Quantum

NOMIS Researcher(s)

Published in

February 10, 2025

Sparse, single-cell labeling approaches enable high-resolution, high signal-to-noise recordings from subcellular compartments and intracellular organelles and allow precise manipulations of individual cells and local circuits while minimizing complex changes associated with global network manipulations. However, thus far, only a limited number of approaches have been developed to label single cells with unique combinations of genetically encoded indicators, target deep cortical structures or sustainably use the same chronic preparation for weeks. Here we developed a method to deliver plasmids selectively to single pyramidal neurons in the mouse dorsal hippocampus using two-photon visually guided in vivo single-cell electroporation to address these limitations. This method allows long-term plasmid expression in a controlled number of individual pyramidal neurons, facilitating subcellular resolution imaging, intracellular organelle tracking, monosynaptic input mapping, plasticity induction and targeted whole-cell patch-clamp recordings.

Research field(s)
Molecular Biology, Neuroscience

NOMIS Researcher(s)

Published in

February 1, 2025

The shrinkage of glaciers and the vanishing of glacier-fed streams (GFSs) are emblematic of climate change. However, forecasts of how GFS microbiome structure and function will change under projected climate change scenarios are lacking. Combining 2,333 prokaryotic metagenome-assembled genomes with climatic, glaciological, and environmental data collected by the Vanishing Glaciers project from 164 GFSs draining Earth’s major mountain ranges, we here predict the future of the GFS microbiome until the end of the century under various climate change scenarios. Our model framework is rooted in a space-for-time substitution design and leverages statistical learning approaches. We predict that declining environmental selection promotes primary production in GFSs, stimulating both bacterial biomass and biodiversity. Concomitantly, predictions suggest that the phylogenetic structure of the GFS microbiome will change and entire bacterial clades are at risk. Furthermore, genomic projections reveal that microbiome functions will shift, with intensified solar energy acquisition pathways, heterotrophy and algal-bacterial interactions. Altogether, we project a ‘greener’ future of the world’s GFSs accompanied by a loss of clades that have adapted to environmental harshness, with consequences for ecosystem functioning.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

January 30, 2025

Human accelerated regions (HARs) have been implicated in human brain evolution. However, insight into the genes and pathways they control is lacking, hindering the understanding of their function. Here, we identify 2,963 conserved gene targets for 1,590 HARs and their orthologs in human and chimpanzee neural stem cells (NSCs). Conserved gene targets are enriched for neurodevelopmental functions and are overrepresented among differentially expressed genes (DEGs) identified in human NSCs (hNSCs) and chimpanzee NSCs (cNSCs) as well as in human versus non-human primate brains. Species-specific gene targets do not converge on any function and are not enriched among DEGs. HAR targets also show cell-type-specific expression in the human fetal brain, including in outer radial glia, which are linked to cortical expansion. Our findings support that HARs influence brain evolution by altering the expression of ancestral gene targets shared between human and chimpanzee rather than by gaining new targets in human and facilitate hypothesis-directed studies of HAR biology.

Research field(s)
Bioinformatics, Developmental Biology, Evolutionary Biology

NOMIS Researcher(s)

Published in

January 9, 2025

The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear. Variables that were directly impacted by the physical process of timber extraction, such as soil structure, were sensitive to even moderate amounts of logging, whereas measures of biodiversity and ecosystem functioning were generally resilient to logging but more affected by conversion to oil palm plantation.

Research field(s)
Conservation Biology, Forestry, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

January 2, 2025

Glacier-fed streams (GFS) feature among Earth’s most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms. A total of 2,855 bacterial MAGs were characterized by diverse strategies to exploit inorganic and organic energy sources, in part via functional redundancy and mixotrophy. We show that biofilms probably become more complex and switch from chemoautotrophy to heterotrophy as algal biomass increases in GFS owing to glacier shrinkage. Our MAG compendium sheds light on the success of microbial life in GFS and provides a resource for future research on a microbiome potentially impacted by climate change.

Research field(s)
Biology, Evolutionary Biology

NOMIS Researcher(s)

Published in

January 1, 2025

The rapid melting of mountain glaciers and the vanishing of their streams is emblematic of climate change1,2. Glacier-fed streams (GFSs) are cold, oligotrophic and unstable ecosystems in which life is dominated by microbial biofilms2,3. However, current knowledge on the GFS microbiome is scarce4,5, precluding an understanding of its response to glacier shrinkage. Here, by leveraging metabarcoding and metagenomics, we provide a comprehensive survey of bacteria in the benthic microbiome across 152 GFSs draining the Earth’s major mountain ranges. We find that the GFS bacterial microbiome is taxonomically and functionally distinct from other cryospheric microbiomes. GFS bacteria are diverse, with more than half being specific to a given mountain range, some unique to single GFSs and a few cosmopolitan and abundant. We show how geographic isolation and environmental selection shape their biogeography, which is characterized by distinct compositional patterns between mountain ranges and hemispheres. Phylogenetic analyses furthermore uncovered microdiverse clades resulting from environmental selection, probably promoting functional resilience and contributing to GFS bacterial biodiversity and biogeography. Climate-induced glacier shrinkage puts this unique microbiome at risk. Our study provides a global reference for future climate-change microbiology studies on the vanishing GFS ecosystem.

Research field(s)
Biology, Evolutionary Biology

INTRODUCTION: While there may be microbial contributions to Alzheimer’s disease (AD), findings have been inconclusive. We recently reported an AD-associated CD83(+)microglia subtype associated with increased immunoglobulinG4(IgG4) in the transverse colon (TC).

METHODS: We used immunohistochemistry (IHC), IgG4 repertoire profiling, and brain organoid experiments to explore this association.

RESULTS: CD83(+) microglia in the superior frontal gyrus (SFG) are associated with elevated IgG4 and human cytomegalovirus (HCMV) in the TC, anti-HCMV IgG4 in cerebrospinal fluid, and both HCMV and IgG4 in the SFG and vagal nerve. This association was replicated in an independent AD cohort. HCMV-infected cerebral organoids showed accelerated AD pathophysiological features (Aβ42 and pTau-212) and neuronal death.

DISCUSSION: Findings indicate complex, cross-tissue interactions between HCMV and the adaptive immune response associated with CD83(+)microglia in persons with AD. This may indicate an opportunity for antiviral therapy in persons with AD and biomarker evidence of HCMV, IgG4, or CD83(+)microglia.

Research field(s)
Genetics & Heredity, Neurology & Neurosurgery, Biology

NOMIS Researcher(s)

Published in

December 18, 2024

A central question in neuroscience is how synaptic plasticity shapes the feature selectivity of neurons in behaving animals1. Hippocampal CA1 pyramidal neurons display one of the most striking forms of feature selectivity by forming spatially and contextually selective receptive fields called place fields, which serve as a model for studying the synaptic basis of learning and memory. Various forms of synaptic plasticity have been proposed as cellular substrates for the emergence of place fields. However, despite decades of work, our understanding of how synaptic plasticity underlies place-field formation and memory encoding remains limited, largely due to a shortage of tools and technical challenges associated with the visualization of synaptic plasticity at the single-neuron resolution in awake behaving animals. To address this, we developed an all-optical approach to monitor the spatiotemporal tuning and synaptic weight changes of dendritic spines before and after the induction of a place field in single CA1 pyramidal neurons during spatial navigation. We identified a temporally asymmetric synaptic plasticity kernel resulting from bidirectional modifications of synaptic weights around the induction of a place field. Our work identified compartment-specific differences in the magnitude and temporal expression of synaptic plasticity between basal dendrites and oblique dendrites. Our results provide experimental evidence linking synaptic plasticity to the rapid emergence of spatial selectivity in hippocampal neurons, a critical prerequisite for episodic memory.

Research field(s)
Neuroscience