Insight
is our reward

Publications in Superparamagnetic Iron Oxide Nanoparticle by NOMIS researchers

NOMIS Researcher(s)

Published in

January 1, 2020

In nanomedicine, iron oxide nanoparticles are at an advanced stage, being commercialized for cancer treatment and iron-deficiency anemia treatment. Their therapeutic efficacy comes from their ability to target a tissue, activate a drug, locally produce a temperature increase following (or not) the application of an external source of energy, modify genes or activate various biological materials, or replace diseased cells by stem cells. Owing to these various mechanisms of action, they can potentially be used for treating a whole range of different diseases, making them more appealing than conventional drugs that target a more limited number of indications.

Research field(s)
Natural Sciences, Chemistry, Medicinal & Biomolecular Chemistry

NOMIS Researcher(s)

Published in

May 28, 2019

IONP (iron oxide nanoparticles) commercialized for treatments of iron anemia or cancer diseases can be administered at doses exceeding 1 g per patient, indicating their bio-compatibility when they are prepared in the right conditions. Various parameters influence IONP biodistribution such as nanoparticle size, hydrophobicity/hydrophilicity, surface charge, core composition, coating properties, route of administration, quantity administered, and opsonization. IONP biodistribution trends include their capture by the reticuloendothelial system (RES), accumulation in liver and spleen, leading to nanoparticle degradation by macrophages and liver Kupffer cells, possibly followed by excretion in feces. To result in efficient tumor treatment, IONP need to reach the tumor in a sufficiently large quantity, using: (i) passive targeting, i.e. the extravasation of IONP through the blood vessel irrigating the tumor, (ii) molecular targeting achieved by a ligand bound to IONP specifically recognizing a cell receptor, and (iii) magnetic targeting in which a magnetic field gradient guides IONP towards the tumor. As a whole, targeting efficacy is relatively similar for different targeting, yielding a percentage of injected IONP in the tumor of 5.10−4% to 3%, 0.1% to 7%, and 5.10−3% to 2.6% for passive, molecular, and magnetic targeting, respectively. For the treatment of iron anemia disease, IONP are captured by the RES, and dissolved into free iron, which is then made available for the organism. For the treatment of cancer, IONP either deliver chemotherapeutic drugs to tumors, produce localized heat under the application of an alternating magnetic field or a laser, or activate in a controlled manner a sono-sensitizer following ultrasound treatment.

Research field(s)
Health Sciences, Biomedical Research, Toxicology

NOMIS Researcher(s)

Published in

January 1, 2019

In medicine, obtaining simply a resolute and accurate image of an organ of interest is a real challenge. To achieve this, it has recently been proposed to use combined methods in which standard imaging (MRI, PAI, CT, PET/SPEC, USI, OI) is carried out in the presence of iron oxide nanoparticles, thus making it possible to image certain tissues/cells through the specific targeting of these nanoparticles, hence resulting in improved imaging contrast and resolution. Here, the advantages and drawbacks of these combined methods are presented as well as some of their recent medical applications.

Research field(s)
Natural Sciences, Chemistry, Organic Chemistry