Insight
is our reward

Publications in PLoS ONE by NOMIS researchers

NOMIS Researcher(s)

Published in

February 16, 2023

Goal directed behaviour requires transformation of sensory input to decision, and then to output action. How the sensory input is accumulated to form the decision has been extensively studied, however, the influence of output action on decision making has been largely dismissed. Although the recent emerging view postulates the reciprocal interaction between action and decision, still little is known about how the parameters of an action modulates the decision. In this study, we focused on the physical effort which necessarily entails with action. We tested if the physical effort during the deliberation period of the perceptual decision, not the effort required after deciding a particular option, can impact on the process of forming the decision. Here, we set up an experimental situation where investing effort is necessary for the initiation of the task, but importantly, is orthogonal to success in task performance. The study was pre-registered to test the hypothesis that the increased effort will decrease the metacognitive accuracy of decision, without affecting the decision accuracy. Participants judged the direction of a random-dot motion stimuli, while holding and maintaining the position of a robotic manipulandum with their right hand. In the key experimental condition, the manipulandum produced force to move away from its position, requiring the participants to resist the force while accumulating the sensory evidence for the decision. The decision was reported by a key-press using the left-hand. We found no evidence that such incidental (i.e., non-instrumental) effort may influence the subsequent decision process and most importantly decision confidence. The possible reason for this result and the future direction of the research are discussed. © 2023 Hagura et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology

NOMIS Researcher(s)

Published in

November 1, 2019

The average judgment of large numbers of people has been found to be consistently better than the best individual response. But what motivates individuals when they make collective decisions? While it is a popular belief that individual incentives promote out-of-the-box thinking and diverse solutions, the exact role of motivation and reward in collective intelligence remains unclear. Here we examined collective intelligence in an interactive group estimation task where participants were rewarded for their individual or group’s performance. In addition to examining individual versus collective incentive structures, we controlled whether participants could see social information about the others’ responses. We found that knowledge about others’ responses reduced the wisdom of the crowd and, crucially, this effect depended on how people were rewarded. When rewarded for the accuracy of their individual responses, participants converged to the group mean, increasing social conformity, reducing diversity and thereby diminishing their group wisdom. When rewarded for their collective performance, diversity of opinions and the group wisdom increased. We conclude that the intuitive association between individual incentives and individualist opinion needs revising.

Research field(s)
Applied Sciences, Information & Communication Technologies, Artificial Intelligence & Image Processing

NOMIS Researcher(s)

Published in

July 1, 2017

Cap binding protein 80 (Cbp80) is the larger subunit of the nuclear cap-binding complex (nCBC), which is known to play important roles in nuclear mRNA processing, export, stability and quality control events. Reducing Cbp80 mRNA levels in the female germline revealed that Cbp80 is also involved in defending the germline against transposable elements. Combining such knockdown experiments with large scale sequencing of small RNAs further showed that Cbp80 is involved in the initial biogenesis of piRNAs as well as in the secondary biogenesis pathway, the ping-pong amplification cycle. We further found that Cbp80 knockdown not only led to the upregulation of transposons, but also to delocalization of Piwi, Aub and Ago3, key factors in the piRNA biosynthesis pathway. Furthermore, compared to controls, levels of Piwi and Aub were also reduced upon knock down of Cbp80. On the other hand, with the same treatment we could not detect significant changes in levels or subcellular distribution (nuage localization) of piRNA precursor transcripts. This shows that Cbp80 plays an important role in the production and localization of the protein components of the piRNA pathway and it seems to be less important for the production and export of the piRNA precursor transcripts.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology