Insight
is our reward

Publications in Oncology & Carcinogenesis by NOMIS researchers

Published in

January 25, 2024
The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF–PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy-resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF–PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.
Significance:

Alternate strategies harnessing anticancer innate immunity are required for lung cancers with poor response rates to T cell–based immunotherapies. This study identifies a targetable, mutually supportive, metabolic relationship between macrophages and transformed epithelium, which is exploited by tumors to obtain metabolic and immunologic support to sustain proliferation and oncogenic signaling.

Research field(s)
Oncology & Carcinogenesis

NOMIS Researcher(s)

Published in

December 6, 2023

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.

Research field(s)
Oncology & Carcinogenesis

NOMIS Researcher(s)

Published in

November 6, 2023

Chromatin conformation reorganization is emerging as an important layer of regulation for gene expression and lineage specification. Yet, how lineage-specific transcription factors contribute to the establishment of cell type-specific 3D chromatin architecture in the immune cells remains unclear, especially for the late stages of T cell subset differentiation and maturation. Regulatory T cells (Treg) are mainly generated in the thymus as a subpopulation of T cells specializing in suppressing excessive immune responses. Here, by comprehensively mapping 3D chromatin organization during Treg cell differentiation, we show that Treg-specific chromatin structures were progressively established during its lineage specification, and highly associated with Treg signature gene expression. Additionally, the binding sites of Foxp3, a Treg lineage specifying transcription factor, were highly enriched at Treg-specific chromatin loop anchors. Further comparison of the chromatin interactions between wide-type Tregs versus Treg cells from Foxp3 knock-in/knockout or newly-generated Foxp3 domain-swap mutant mouse revealed that Foxp3 was essential for the establishment of Treg-specific 3D chromatin architecture, although it was not dependent on the formation of the Foxp3 domain-swapped dimer. These results highlighted an underappreciated role of Foxp3 in modulating Treg-specific 3D chromatin structure formation.

Research field(s)
Genetics & Heredity, Immunology, Oncology & Carcinogenesis

NOMIS Researcher(s)

Published in

February 14, 2023

Background: Recent efforts have described the evolution of glioblastoma from initial diagnosis to post-treatment recurrence on a genomic and transcriptomic level. However, the evolution of the proteomic landscape is largely unknown.

Methods: Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was used to characterize the quantitative proteomes of two independent cohorts of paired newly diagnosed and recurrent glioblastomas. Recurrence-associated proteins were validated using immunohistochemistry and further studied in human glioma cell lines, orthotopic xenograft models, and human organotypic brain slice cultures. External spatial transcriptomic, single-cell, and bulk RNA sequencing data were analyzed to gain mechanistic insights.

Results: Although overall proteomic changes were heterogeneous across patients, we identified BCAS1, INF2, and FBXO2 as consistently upregulated proteins at recurrence and validated these using immunohistochemistry. Knockout of FBXO2 in human glioma cells conferred a strong survival benefit in orthotopic xenograft mouse models and reduced invasive growth in organotypic brain slice cultures. In glioblastoma patient samples, FBXO2 expression was enriched in the tumor infiltration zone and FBXO2-positive cancer cells were associated with synaptic signaling processes.

Conclusions: These findings demonstrate a potential role of FBXO2-dependent glioma-microenvironment interactions to promote tumor growth. Furthermore, the published datasets provide a valuable resource for further studies.

Research field(s)
Oncology & Carcinogenesis

NOMIS Researcher(s)

Published in

October 15, 2020

Adenosquamous cancer of the pancreas (ASCP) is a subtype of pancreatic cancer that has a worse prognosis and greater metastatic potential than the more common pancreatic ductal adenocarcinoma (PDAC) subtype. To distinguish the genomic landscape of ASCP and identify actionable targets for this lethal cancer, we applied DNA content flow cytometry to a series of 15 tumor samples including five patient-derived xenografts (PDX). We interrogated purified sorted tumor fractions from these samples with whole-genome copy-number variant (CNV), whole-exome sequencing, and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analyses. These identified a variety of somatic genomic lesions targeting chromatin regulators in ASCP genomes that were superimposed on well-characterized genomic lesions including mutations in TP53 (87%) and KRAS (73%), amplification of MYC (47%), and homozygous deletion of CDKN2A (40%) that are common in PDACs. Furthermore, a comparison of ATAC-seq profiles of three ASCP and three PDAC genomes using flow-sorted PDX models identified genes with accessible chromatin unique to the ASCP genomes, including the lysine methyltransferase SMYD2 and the pancreatic cancer stem cell regulator RORC in all three ASCPs, and a FGFR1-ERLIN2 fusion associated with focal CNVs in both genes in a single ASCP. Finally, we demonstrate significant activity of a pan FGFR inhibitor against organoids derived from the FGFR1-ERLIN2 fusion-positive ASCP PDX model. Our results suggest that the genomic and epigenomic landscape of ASCP provide new strategies for targeting this aggressive subtype of pancreatic cancer.

Research field(s)
Health Sciences, Clinical Medicine, Oncology & Carcinogenesis

NOMIS Researcher(s)

Published in

October 2, 2020

null

Research field(s)
Health Sciences, Clinical Medicine, Oncology & Carcinogenesis

NOMIS Researcher(s)

Published in

January 1, 2020

Traditional anti-cancer treatments are inefficient against glioblastoma, which remains one of the deadliest and most aggressive cancers. Nano-drugs could help to improve this situation by enabling: (i) an increase of anti-glioblastoma multiforme (GBM) activity of chemo/gene therapeutic drugs, notably by an improved diffusion of these drugs through the blood brain barrier (BBB), (ii) the sensibilization of radio-resistant GBM tumor cells to radiotherapy, (iii) the removal by surgery of infiltrating GBM tumor cells, (iv) the restoration of an apoptotic mechanism of GBM cellular death, (v) the destruction of angiogenic blood vessels, (vi) the stimulation of anti-tumor immune cells, e.g., T cells, NK cells, and the neutralization of pro-tumoral immune cells, e.g., Treg cells, (vii) the local production of heat or radical oxygen species (ROS), and (viii) the controlled release/activation of anti-GBM drugs following the application of a stimulus. This review covers these different aspects.

Research field(s)
Health Sciences, Clinical Medicine, Oncology & Carcinogenesis

NOMIS Researcher(s)

Published in

January 1, 2016

Germline mutation of the FLCN gene causes Birt–Hogg–Dubé syndrome (BHD), a rare autosomal dominant condition characterized by skin fibrofolliculomas, lung cysts, spontaneous pneumothorax and renal tumours. We identified a hitherto unreported pathogenic FLCN frameshift deletion c.563delT (p.Phe188Serfs*35) in a family of a 46-year-old woman presented with macrohematuria due to bilateral chromophobe renal carcinomas. A heritable renal cancer was suspected due to the bilaterality of the tumour and as the father of this woman had suffered from renal cancer. Initially, however, BHD was overlooked by the medical team despite the highly suggestive clinical presentation. We assume that BHD is underdiagnosed, at least partially, due to low awareness of this variable condition and to insufficient use of appropriate genetic testing. Our study indicates that BHD and FLCN testing should be routinely considered in patients with positive family or personal history of renal tumours. In addition, we demonstrate how patients and their families can play a driving role in initiating genetic diagnosis, presymptomatic testing of at-risk relatives, targeted disease management, and genetic counselling of rare diseases such as BHD.

Research field(s)
Health Sciences, Clinical Medicine, Oncology & Carcinogenesis