is our reward

Publications in Josephson Junctions by NOMIS researchers

NOMIS Researcher(s)

October 20, 2023

State-of-the-art transmon qubits rely on large capacitors, which systematically improve their coherence due to reduced surface-loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses – a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36×39μm2 with ≳100-nm-wide vacuum-gap capacitors that are micromachined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. We achieve a vacuum participation ratio up to 99.6% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxation-time measurements for small gaps with high zero-point electric field variance of up to 22 V/m reveal a double exponential decay indicating comparably strong qubit interaction with long-lived two-level systems. The exceptionally high selectivity of up to 20 dB to the superconductor-vacuum interface allows us to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide previously exposed to ambient conditions. In terms of future scaling potential, we achieve a ratio of qubit quality factor to a footprint area equal to 20μm-2, which is comparable with the highest T1 devices relying on larger geometries, a value that could improve substantially for lower surface-loss superconductors. © 2023 American Physical Society.

Research field(s)
Natural Sciences, Quantum, Josephson Junctions, Microwave, Qubits