Insight
is our reward

Publications in Health Sciences by NOMIS researchers

NOMIS Researcher(s)

Published in

June 29, 2023

Chromosomes in the eukaryotic nucleus are highly compacted. However, for many functional processes, including transcription initiation, the pairwise motion of distal chromosomal elements such as enhancers and promoters is essential and necessitates dynamic fluidity. Here, we used a live-imaging assay to simultaneously measure the positions of pairs of enhancers and promoters and their transcriptional output while systematically varying the genomic separation between these two DNA loci. Our analysis reveals the coexistence of a compact globular organization and fast subdiffusive dynamics. These combined features cause an anomalous scaling of polymer relaxation times with genomic separation leading to long-ranged correlations. Thus, encounter times of DNA loci are much less dependent on genomic distance than predicted by existing polymer models, with potential consequences for eukaryotic gene expression. © 2023 American Association for the Advancement of Science. All rights reserved.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

June 29, 2023

Aims: Psychotic symptoms are increasingly recognized as a distinguishing clinical feature in patients with dementia due to frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Within this group, carriers of the C9orf72 repeat expansion are particularly prone to develop delusions and hallucinations. Methods: The present retrospective study sought to provide novel details about the relationship between FTLD-TDP pathology and the presence of psychotic symptoms during life. Results: We found that FTLD-TDP subtype B was more frequent in patients with psychotic symptoms than in those without. This relationship was present even when corrected for the presence of C9orf72 mutation, suggesting that pathophysiological processes leading to the development of subtype B pathology may increase the risk of psychotic symptoms. Within the group of FTLD-TDP cases with subtype B pathology, psychotic symptoms tended to be associated with a greater burden of TDP-43 pathology in the white matter and a lower burden in lower motor neurons. When present, pathological involvement of motor neurons was more likely to be asymptomatic in patients with psychosis. Conclusions: This work suggests that psychotic symptoms in patients with FTLD-TDP tend to be associated with subtype B pathology. This relationship is not completely explained by the effects of the C9orf72 mutation and raises the possibility of a direct link between psychotic symptoms and this particular pattern of TDP-43 pathology. © 2023 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

Research field(s)
Health Sciences, Biomedical Research, Biochemistry & Molecular Biology

NOMIS Researcher(s)

Published in

June 27, 2023

The human embryo undergoes morphogenetic transformations following implantation into the uterus, but our knowledge of this crucial stage is limited by the inability to observe the embryo in vivo. Models of the embryo derived from stem cells are important tools for interrogating developmental events and tissue–tissue crosstalk during these stages 1. Here we establish a model of the human post-implantation embryo, a human embryoid, comprising embryonic and extraembryonic tissues. We combine two types of extraembryonic-like cell generated by overexpression of transcription factors with wild-type embryonic stem cells and promote their self-organization into structures that mimic several aspects of the post-implantation human embryo. These self-organized aggregates contain a pluripotent epiblast-like domain surrounded by extraembryonic-like tissues. Our functional studies demonstrate that the epiblast-like domain robustly differentiates into amnion, extraembryonic mesenchyme and primordial germ cell-like cells in response to bone morphogenetic protein cues. In addition, we identify an inhibitory role for SOX17 in the specification of anterior hypoblast-like cells 2. Modulation of the subpopulations in the hypoblast-like compartment demonstrates that extraembryonic-like cells influence epiblast-like domain differentiation, highlighting functional tissue–tissue crosstalk. In conclusion, we present a modular, tractable, integrated 3 model of the human embryo that will enable us to probe key questions of human post-implantation development, a critical window during which substantial numbers of pregnancies fail. © 2023, The Author(s).

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology

NOMIS Researcher(s)

June 24, 2023

Purpose: Whilst survival in paediatric critical care has improved, clinicians lack tools capable of predicting long-term outcomes. We developed a machine learning model to predict poor school outcomes in children surviving intensive care unit (ICU). Methods: Population-based study of children < 16 years requiring ICU admission in Queensland, Australia, between 1997 and 2019. Failure to meet the National Minimum Standard (NMS) in the National Assessment Program-Literacy and Numeracy (NAPLAN) assessment during primary and secondary school was the primary outcome. Routine ICU information was used to train machine learning classifiers. Models were trained, validated and tested using stratified nested cross-validation. Results: 13,957 childhood ICU survivors with 37,200 corresponding NAPLAN tests after a median follow-up duration of 6 years were included. 14.7%, 17%, 15.6% and 16.6% failed to meet NMS in school grades 3, 5, 7 and 9. The model demonstrated an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.8 (standard deviation SD, 0.01), with 51% specificity to reach 85% sensitivity [relative Area Under the Precision Recall Curve (rel-AUPRC) 3.42, SD 0.06]. Socio-economic status, illness severity, and neurological, congenital, and genetic disorders contributed most to the predictions. In children with no comorbidities admitted between 2009 and 2019, the model achieved a AUROC of 0.77 (SD 0.03) and a rel-AUPRC of 3.31 (SD 0.42). Conclusions: A machine learning model using data available at time of ICU discharge predicted failure to meet minimum educational requirements at school age. Implementation of this prediction tool could assist in prioritizing patients for follow-up and targeting of rehabilitative measures. © 2023, The Author(s).

Research field(s)
Health Sciences, Clinical Medicine, Emergency & Critical Care Medicine

NOMIS Researcher(s)

June 15, 2023

The progressive accumulation of insoluble aggregates of the presynaptic protein alpha-synuclein (α-Syn) is a hallmark of neurodegenerative disorders including Parkinson’s disease (PD), Multiple System Atrophy, and Dementia with Lewy Bodies, commonly referred to as synucleinopathies. Despite considerable progress on the structural biology of these aggregates, the molecular mechanisms mediating their cell-to-cell transmission, propagation, and neurotoxicity remain only partially understood. Numerous studies have highlighted the stereotypical spatiotemporal spreading of pathological α-Syn aggregates across different tissues and anatomically connected brain regions over time. Experimental evidence from various cellular and animal models indicate that α-Syn transfer occurs in two defined steps: the release of pathogenic α-Syn species from infected cells, and their uptake via passive or active endocytic pathways. Once α-Syn aggregates have been internalized, little is known about what drives their toxicity or how they interact with the endogenous protein to promote its misfolding and subsequent aggregation. Similarly, unknown genetic factors modulate different cellular responses to the aggregation and accumulation of pathogenic α-Syn species. Here we discuss the current understanding of the molecular phenomena associated with the intercellular spreading of pathogenic α-Syn seeds and summarize the evidence supporting the transmission hypothesis. Understanding the molecular mechanisms involved in α-Syn aggregates transmission is essential to develop novel targeted therapeutics against PD and related synucleinopathies. © 2022 The Author(s)

Research field(s)
Health Sciences, Biomedical Research, Biochemistry & Molecular Biology

NOMIS Researcher(s)

Published in

June 13, 2023

CD8+ T cells provide host protection against pathogens by differentiating into distinct effector and memory cell subsets, but how chromatin is site-specifically remodeled during their differentiation is unclear. Due to its critical role in regulating chromatin and enhancer accessibility through its nucleosome remodeling activities, we investigated the role of the canonical BAF (cBAF) chromatin remodeling complex in antiviral CD8+ T cells during infection. ARID1A, a subunit of cBAF, was recruited early after activation and established de novo open chromatin regions (OCRs) at enhancers. Arid1a deficiency impaired the opening of thousands of activation-induced enhancers, leading to loss of TF binding, dysregulated proliferation and gene expression, and failure to undergo terminal effector differentiation. Although Arid1a was dispensable for circulating memory cell formation, tissue-resident memory (Trm) formation was strongly impaired. Thus, cBAF governs the enhancer landscape of activated CD8+ T cells that orchestrates TF recruitment and activity and the acquisition of specific effector and memory differentiation states. © 2023 Elsevier Inc.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

June 9, 2023

During political campaigns, candidates use rhetoric to advance competing visions and assessments of their country. Research reveals that the moral language used in this rhetoric can significantly influence citizens’ political attitudes and behaviors; however, the moral language actually used in the rhetoric of elites during political campaigns remains understudied. Using a data set of every tweet (N = 139, 412) published by 39 US presidential candidates during the 2016 and 2020 primary elections, we extracted moral language and constructed network models illustrating how candidates’ rhetoric is semantically connected. These network models yielded two key discoveries. First, we find that party affiliation clusters can be reconstructed solely based on the moral words used in candidates’ rhetoric. Within each party, popular moral values are expressed in highly similar ways, with Democrats emphasizing careful and just treatment of individuals and Republicans emphasizing in-group loyalty and respect for social hierarchies. Second, we illustrate the ways in which outsider candidates like Donald Trump can separate themselves during primaries by using moral rhetoric that differs from their parties’ common language. Our findings demonstrate the functional use of strategic moral rhetoric in a campaign context and show that unique methods of text network analysis are broadly applicable to the study of campaigns and social movements. © The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

June 6, 2023

Plasma tau phosphorylated at threonine 217 (P-tau217) and neurofilament light (NfL) have emerged as markers of Alzheimer’s disease (AD) pathology. Few studies have examined the role of sex in plasma biomarkers in sporadic AD, yielding mixed findings, and none in autosomal dominant AD. METHODS: We examined the effects of sex and age on plasma P-tau217 and NfL, and their association with cognitive performance in a cross-sectional study of 621 Presenilin-1 E280A mutation carriers (PSEN1) and non-carriers. RESULTS: As plasma P-tau217 levels increase, cognitively unimpaired female carriers showed better cognitive performance than cognitively unimpaired male carriers. Yet, as disease progresses, female carriers had a greater plasma NfL increase than male carriers. There were no sex differences in the association between age and plasma biomarkers among non-carriers. DISCUSSION: Our findings suggest that, among PSEN1 mutation carriers, females had a greater rate of neurodegeneration than males, yet it did not predict cognitive performance. HIGHLIGHTS: We examined sex differences in plasma P-tau217 and NfL in Presenilin-1 E280A (PSEN1) mutation carriers and non-carriers. Female carriers had a greater plasma NfL increase, but not P-tau217, than male carriers. As plasma P-tau217 levels increase, cognitively unimpaired female carriers showed better cognitive performance than cognitively unimpaired male carriers. The interaction effect of sex by plasma NfL levels did not predict cognition among carriers. © 2023 the Alzheimer’s Association.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

June 2, 2023

The β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, are one of the most common genetic diseases worldwide and are caused by mutations affecting the structure or production of β-globin subunits in adult hemoglobin. Many gene editing efforts to treat the β-he-moglobinopathies attempt to correct β-globin mutations or increase γ-globin for fetal hemoglobin production. δ-globin, the subunit of adult hemoglobin A2, has high homology to β-globin and is already pan-cellularly expressed at low levels in adult red blood cells. However, upregulation of δ-globin is a relatively unexplored avenue to increase the amount of functional hemoglobin. Here, we use CRISPR-Cas9 to repair non-functional transcriptional elements in the endogenous promoter region of δ-globin to increase overall expression of adult hemoglobin 2 (HbA2). We find that insertion of a KLF1 site alone is insufficient to upregulate δ-globin. Instead, multiple transcription factor elements are necessary for robust upregulation of δ-globin from the endogenous locus. Promoter edited HUDEP-2 immortalized erythroid progenitor cells exhibit striking increases of HBD transcript, from less than 5% to over 20% of total β-like globins in clonal populations. Edited CD34 +hemato-poietic stem and progenitors (HSPCs) differentiated to primary human erythroblasts express up to 46% HBD in clonal populations. These findings add mechanistic insight to globin gene regulation and offer a new therapeutic avenue to treat β-hemoglobinopathies. © 2023, eLife Sciences Publications Ltd. All rights reserved.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

Molecular classification of gastric cancer (GC) identified a subgroup of patients showing chemoresistance and poor prognosis, termed SEM (Stem-like/Epithelial-to-mesenchymal transition/Mesenchymal) type in this study. Here, we show that SEM-type GC exhibits a distinct metabolic profile characterized by high glutaminase (GLS) levels. Unexpectedly, SEM-type GC cells are resistant to glutaminolysis inhibition. We show that under glutamine starvation, SEM-type GC cells up-regulate the 3 phosphoglycerate dehydrogenase (PHGDH)-mediated mitochondrial folate cycle pathway to produce NADPH as a reactive oxygen species scavenger for survival. This metabolic plasticity is associated with globally open chromatin structure in SEM-type GC cells, with ATF4/CEBPB identified as transcriptional drivers of the PHGDH-driven salvage pathway. Single-nucleus transcriptome analysis of patient-derived SEM-type GC organoids revealed intratumoral heterogeneity, with stemness-high subpopulations displaying high GLS expression, a resistance to GLS inhibition, and ATF4/CEBPB activation. Notably, coinhibition of GLS and PHGDH successfully eliminated stemness-high cancer cells. Together, these results provide insight into the metabolic plasticity of aggressive GC cells and suggest a treatment strategy for chemoresistant GC patients. Copyright © 2023 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Research field(s)
Health Sciences, Biomedical Research, Biochemistry & Molecular Biology

NOMIS Researcher(s)

Published in

May 15, 2023

The LINC complex tethers the cell nucleus to the cytoskeleton to regulate mechanical forces during cell migration, differentiation, and various diseases. The function of LINC complexes relies on the interaction between highly conserved SUN and KASH proteins that form higher-order assemblies capable of load bearing. These structural details have emerged from in vitro assembled LINC complexes; however, the principles of in vivo assembly remain obscure. Here, we report a conformation-specific SUN2 antibody as a tool to visualize LINC complex dynamics in situ. Using imaging, biochemical, and cellular methods, we find that conserved cysteines in SUN2 undergo KASH-dependent inter- and intramolecular disulfide bond rearrangements. Disruption of the SUN2 terminal disulfide bond compromises SUN2 localization, turnover, LINC complex assembly in addition to cytoskeletal organization and cell migration. Moreover, using pharmacological and genetic perturbations, we identify components of the ER lumen as SUN2 cysteines redox state regulators. Overall, we provide evidence for SUN2 disulfide bond rearrangement as a physiologically relevant structural modification that regulates LINC complex functions. © 2023 Sharma and Hetzer.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

May 15, 2023

We characterized the world’s second case with ascertained extreme resilience to autosomal dominant Alzheimer’s disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia–Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia. © 2023, The Author(s).

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

May 9, 2023

The amoeba-resistant bacterium Legionella pneumophila causes Legionnaires’ disease and employs a type IV secretion system (T4SS) to replicate in the unique, ER-associated Legionella-containing vacuole (LCV). The large fusion GTPase Sey1/atlastin is implicated in ER dynamics, ER-de-rived lipid droplet (LD) formation, and LCV maturation. Here, we employ cryo-electron tomography, confocal microscopy, proteomics, and isotopologue profiling to analyze LCV-LD interactions in the genetically tractable amoeba Dictyostelium discoideum. Dually fluorescence-labeled D. discoideum producing LCV and LD markers revealed that Sey1 as well as the L. pneumophila T4SS and the Ran GTPase activator LegG1 promote LCV-LD interactions. In vitro reconstitution using purified LCVs and LDs from parental or Δsey1 mutant D. discoideum indicated that Sey1 and GTP promote this process. Sey1 and the L. pneumophila fatty acid transporter FadL were implicated in palmi-tate catabolism and palmitate-dependent intracellular growth. Taken together, our results reveal that Sey1 and LegG1 mediate LD-and FadL-dependent fatty acid metabolism of intracellular L. pneumophila. © Hüsler et al.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

May 9, 2023

Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms. © 2023 by the authors.

Research field(s)
Health Sciences, Biomedical Research, Biochemistry & Molecular Biology

NOMIS Researcher(s)

Published in

May 3, 2023

Why do some explanations strike people as highly satisfying while others, seemingly equally accurate, satisfy them less? We asked laypeople to generate and rate thousands of open-ended explanations in response to ‘Why?’ questions spanning multiple domains, and analyzed the properties of these explanations to discover (1) what kinds of features are associated with greater explanation quality; (2) whether people can tell how good their explanations are; and (3) which cognitive traits predict the ability to generate good explanations. Our results support a pluralistic view of explanation, where satisfaction is best predicted by either functional or mechanistic content. Respondents were better able to judge how accurate their explanations were than how satisfying they were to others. Insight problem solving ability was the cognitive ability most strongly associated with the generation of satisfying explanations. © 2023 Elsevier B.V.

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology

NOMIS Researcher(s)

Published in

May 2, 2023

Do we judge hate incidents similarly when they are performed using words or bodily actions? Hate speech incidents are rarely reported by bystanders, and whether or how much they should be punished remains a matter of legal, theoretical and social disagreement. In a pre-registered study (N = 1309), participants read about verbal and nonverbal attacks stemming from identical hateful intent, which created the same consequences for the victims. We asked them how much punishment the perpetrator should receive, how likely they would be to denounce such an incident and how much harm they judged the victim suffered. The results contradicted our pre-registered hypotheses and the predictions of dual moral theories, which hold that intention and harmful consequences are the sole psychological determinants of punishment. Instead, participants consistently rated verbal hate attacks as more deserving of punishment, denunciation and being more harmful to the victim than nonverbal attacks. This difference is explained by the concept of action aversion, suggesting that lay observers have different intrinsic associations with interactions involving words compared to bodily actions, regardless of consequences. This explanation has implications for social psychology, moral theories, and legislative efforts to sanction hate speech, which are considered. Protocol registration: The Stage 1 protocol for this Registered Report was accepted in principle on 29/06/2022. The protocol, as accepted by the journal, can be found at: https://doi.org/10.17605/OSF.IO/Z86TV . © 2023, The Author(s).

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology

NOMIS Researcher(s)

Published in

April 27, 2023

Macroautophagy is one of two major degradation systems in eukaryotic cells. Regulation and control of autophagy are often achieved through the presence of short peptide sequences called LC3 interacting regions (LIR) in autophagy-involved proteins. Using a combination of new protein-derived activity-based probes prepared from recombinant LC3 proteins, along with protein modeling and X-ray crystallography of the ATG3-LIR peptide complex, we identified a noncanonical LIR motif in the human E2 enzyme responsible for LC3 lipidation, ATG3. The LIR motif is present in the flexible region of ATG3 and adopts an uncommon β-sheet structure binding to the backside of LC3. We show that the β-sheet conformation is crucial for its interaction with LC3 and used this insight to design synthetic macrocyclic peptide-binders to ATG3. CRISPR-enabled in cellulo studies provide evidence that LIRATG3is required for LC3 lipidation and ATG3∼LC3 thioester formation. Removal of LIRATG3negatively impacts the rate of thioester transfer from ATG7 to ATG3. © 2023 American Chemical Society. All rights reserved.

Research field(s)
Health Sciences, Chemistry, Organic Chemistry

NOMIS Researcher(s)

Published in

April 6, 2023

Transcriptional regulation exhibits extensive robustness, but human genetics indicates sensitivity to transcription factor (TF) dosage. Reconciling such observations requires quantitative studies of TF dosage effects at trait-relevant ranges, largely lacking so far. TFs play central roles in both normal-range and disease-associated variation in craniofacial morphology; we therefore developed an approach to precisely modulate TF levels in human facial progenitor cells and applied it to SOX9, a TF associated with craniofacial variation and disease (Pierre Robin sequence (PRS)). Most SOX9-dependent regulatory elements (REs) are buffered against small decreases in SOX9 dosage, but REs directly and primarily regulated by SOX9 show heightened sensitivity to SOX9 dosage; these RE responses partially predict gene expression responses. Sensitive REs and genes preferentially affect functional chondrogenesis and PRS-like craniofacial shape variation. We propose that such REs and genes underlie the sensitivity of specific phenotypes to TF dosage, while buffering of other genes leads to robust, nonlinear dosage-to-phenotype relationships. © 2023, The Author(s).

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

April 4, 2023

Human brain organoids provide unique platforms for modeling several aspects of human brain development and pathology. However, current brain organoid systems mostly lack the resolution to recapitulate the development of finer brain structures with subregional identity, including functionally distinct nuclei in the thalamus. Here, we report a method for converting human embryonic stem cells (hESCs) into ventral thalamic organoids (vThOs) with transcriptionally diverse nuclei identities. Notably, single-cell RNA sequencing revealed previously unachieved thalamic patterning with a thalamic reticular nucleus (TRN) signature, a GABAergic nucleus located in the ventral thalamus. Using vThOs, we explored the functions of TRN-specific, disease-associated genes patched domain containing 1 (PTCHD1) and receptor tyrosine-protein kinase (ERBB4) during human thalamic development. Perturbations in PTCHD1 or ERBB4 impaired neuronal functions in vThOs, albeit not affecting the overall thalamic lineage development. Together, vThOs present an experimental model for understanding nuclei-specific development and pathology in the thalamus of the human brain. © 2023 Elsevier Inc.

Research field(s)
Health Sciences

NOMIS Researcher(s)

Published in

April 3, 2023

Nudge is a popular public policy tool that harnesses well-known biases in human judgement to subtly guide people’s decisions, often to improve their choices or to achieve some socially desirable outcome. Thanks to recent developments in artificial intelligence (AI) methods new possibilities emerge of how and when our decisions can be nudged. On the one hand, algorithmically personalized nudges have the potential to vastly improve human daily lives. On the other hand, blindly outsourcing the development and implementation of nudges to “black box” AI systems means that the ultimate reasons for why such nudges work, that is, the underlying human cognitive processes that they harness, will often be unknown. In this paper, we unpack this concern by considering a series of examples and case studies that demonstrate how AI systems can learn to harness biases in human judgment to reach a specified goal. Drawing on an analogy in a philosophical debate concerning the methodology of economics, we call for the need of an interdisciplinary oversight of AI systems that are tasked and deployed to nudge human behaviours. © 2023, The Author(s).

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology