Insight
is our reward

Publications in Health Sciences by NOMIS researchers

NOMIS Researcher(s)

Published in

June 25, 2021

We cooperate with other people despite the risk of being exploited or hurt. If future artificial intelligence (AI) systems are benevolent and cooperative toward us, what will we do in return? Here we show that our cooperative dispositions are weaker when we interact with AI. In nine experiments, humans interacted with either another human or an AI agent in four classic social dilemma economic games and a newly designed game of Reciprocity that we introduce here. Contrary to the hypothesis that people mistrust algorithms, participants trusted their AI partners to be as cooperative as humans. However, they did not return AI’s benevolence as much and exploited the AI more than humans. These findings warn that future self-driving cars or co-working robots, whose success depends on humans’ returning their cooperativeness, run the risk of being exploited. This vulnerability calls not just for smarter machines but also better human-centered policies.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

June 8, 2021

Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson’s disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is ITGA8, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

June 1, 2021

Abstract: The progression of prion diseases is accompanied by the accumulation of prions in the brain. Ablation of microglia enhances prion accumulation and accelerates disease progression, suggesting that microglia play a neuroprotective role by clearing prions. However, the mechanisms underlying the phagocytosis and clearance of prion are largely unknown. The macrophage scavenger receptor 1 (Msr1) is an important phagocytic receptor expressed by microglia in the brain and is involved in the uptake and clearance of soluble amyloid-β. We therefore asked whether Msr1 might play a role in prion clearance and assessed the scavenger function of Msr1 in prion pathogenesis. We found that Msr1 expression was upregulated in prion-infected mouse brains. However, Msr1 deficiency did not change prion disease progression or lesion patterns. Prion deposition in Msr1 deficient mice was similar to their wild-type littermates. In addition, prion-induced neuroinflammation was not affected by Msr1 ablation. We conclude that Msr1 does not play a major role in prion pathogenesis. Key messages: Msr1 expression is upregulated in prion-infected mouse brains at the terminal stageMsr1 deficiency does not affect prion disease progressionMsr1 does not play a major role in prion clearance or prion pathogenesisMicroglia-mediated phagocytosis and clearance of Aβ and prion may adopt distinct molecular pathways.

Research field(s)
Health Sciences, Clinical Medicine, Immunology

NOMIS Researcher(s)

Published in

June 1, 2021

Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

May 26, 2021

Neuroinflammation is an emerging focus of translational stroke research. Preclinical studies have demonstrated a critical role for brain-invading lymphocytes in post-stroke pathophysiology. Reducing cerebral lymphocyte invasion by anti-CD49d antibodies consistently improves outcome in the acute phase after experimental stroke models. However, clinical trials testing this approach failed to show efficacy in stroke patients for the chronic outcome 3 mo after stroke. Here, we identify a potential mechanistic reason for this phenomenon by detecting chronic T cell accumulation—evading the systemic therapy—in the post-ischemic brain. We observed a persistent accumulation of T cells in mice and human autopsy samples for more than 1 mo after stroke. Cerebral T cell accumulation in the post-ischemic brain was driven by increased local T cell proliferation rather than by T cell invasion. This observation urges re-evaluation of current immunotherapeutic approaches, which target circulating lymphocytes for promoting recovery after stroke.

Research field(s)
Health Sciences, Clinical Medicine, Immunology

NOMIS Researcher(s)

May 26, 2021

Background: Following the spread of the coronavirus disease 2019 (COVID-19) pandemic a new disease entity emerged, defined as Pediatric Inflammatory Multisystem Syndrome temporally associated with COVID-19 (PIMS-TS), or Multisystem Inflammatory Syndrome in Children (MIS-C). In the absence of trials, evidence for treatment remains scarce. Purpose: To develop best practice recommendations for the diagnosis and treatment of children with PIMS-TS in Switzerland. It is acknowledged that the field is changing rapidly, and regular revisions in the coming months are pre-planned as evidence is increasing. Methods: Consensus guidelines for best practice were established by a multidisciplinary group of Swiss pediatric clinicians with expertise in intensive care, immunology/rheumatology, infectious diseases, hematology, and cardiology. Subsequent to literature review, four working groups established draft recommendations which were subsequently adapted in a modified Delphi process. Recommendations had to reach >80% agreement for acceptance. Results: The group achieved agreement on 26 recommendations, which specify diagnostic approaches and interventions across anti-inflammatory, anti-infectious, and support therapies, and follow-up for children with suspected PIMS-TS. A management algorithm was derived to guide treatment depending on the phenotype of presentation, categorized into PIMS-TS with (a) shock, (b) Kawasaki-disease like, and (c) undifferentiated inflammatory presentation. Conclusion: Available literature on PIMS-TS is limited to retrospective or prospective observational studies. Informed by these cohort studies and indirect evidence from other inflammatory conditions in children and adults, as well as guidelines from international health authorities, the Swiss PIMS-TS recommendations represent best practice guidelines based on currently available knowledge to standardize treatment of children with suspected PIMS-TS. Given the absence of high-grade evidence, regular updates of the recommendations will be warranted, and participation of patients in trials should be encouraged.

Research field(s)
Health Sciences, Clinical Medicine, Pediatrics

NOMIS Researcher(s)

May 13, 2021

Objectives: In recent years several 18F-labeled amyloid PET (Aβ-PET) tracers have been developed and have obtained clinical approval. There is evidence that Aβ-PET perfusion can provide surrogate information about neuronal injury in neurodegenerative diseases when compared to conventional blood flow and glucose metabolism assessment. However, this paradigm has not yet been tested in neurodegenerative disorders with cortical and subcortical affection. Therefore, we investigated the performance of early acquisition 18F-flutemetamol Aβ-PET in comparison to 18F-fluorodeoxyglucose (FDG)-PET in corticobasal syndrome (CBS). Methods: Subjects with clinically possible or probable CBS were recruited within the prospective Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer’s Disease (ActiGliA) observational study and all CBS cases with an available FDG-PET prior to Aβ-PET were selected. Aβ-PET was acquired 0–10 min p.i. (early-phase) and 90–110 min p.i. (late-phase) whereas FDG-PET was recorded statically from 30 to 50 min p.i. Semiquantitative regional values and asymmetry indices (AI) were compared between early-phase Aβ-PET and FDG-PET. Visual assessments of hypoperfusion and hypometabolism were compared between both methods. Late-phase Aβ-PET was evaluated visually for assessment of Aβ-positivity. Results: Among 20 evaluated patients with CBS, 5 were Aβ-positive. Early-phase Aβ-PET and FDG-PET SUVr correlated highly in cortical (mean R = 0.86, range 0.77–0.92) and subcortical brain regions (mean R = 0.84, range 0.79–0.90). Strong asymmetry was observed in FDG-PET for the motor cortex (mean |AI| = 2.9%), the parietal cortex (mean |AI| = 2.9%), and the thalamus (mean |AI| = 5.5%), correlating well with AI of early-phase Aβ-PET (mean R = 0.87, range 0.62–0.98). Visual assessments of hypoperfusion and hypometabolism were highly congruent. Conclusion: Early-phase Aβ-PET facilitates assessment of neuronal injury in CBS for cortical and subcortical areas. Known asymmetries in CBS are captured by this method, enabling assessment of Aβ-status and neuronal injury with a single radiation exposure at a single visit.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

May 1, 2021

Two microglial TAM receptor tyrosine kinases, Axl and Mer, have been linked to Alzheimer’s disease, but their roles in disease have not been tested experimentally. We find that in Alzheimer’s disease and its mouse models, induced expression of Axl and Mer in amyloid plaque–associated microglia was coupled to induced plaque decoration by the TAM ligand Gas6 and its co-ligand phosphatidylserine. In the APP/PS1 mouse model of Alzheimer’s disease, genetic ablation of Axl and Mer resulted in microglia that were unable to normally detect, respond to, organize or phagocytose amyloid-β plaques. These major deficits notwithstanding, TAM-deficient APP/PS1 mice developed fewer dense-core plaques than APP/PS1 mice with normal microglia. Our findings reveal that the TAM system is an essential mediator of microglial recognition and engulfment of amyloid plaques and that TAM-driven microglial phagocytosis does not inhibit, but rather promotes, dense-core plaque development.

Research field(s)
Health Sciences, Clinical Medicine, Immunology

NOMIS Researcher(s)

Published in

May 1, 2021

Mutations in RNA binding proteins (RBPs) and in genes regulating autophagy are frequent causes of familial amyotrophic lateral sclerosis (fALS). The P56S mutation in vesicle-associated membrane protein-associated protein B (VAPB) leads to fALS (ALS8) and spinal muscular atrophy (SMA). While VAPB is primarily involved in the unfolded protein response (UPR), vesicular trafficking and in initial steps of the autophagy pathway, the effect of mutant P56S-VAPB on autophagy regulation in connection with RBP homeostasis has not been explored yet. Examining the muscle biopsy of our index ALS8 patient of European origin revealed globular accumulations of VAPB aggregates co-localised with autophagy markers LC3 and p62 in partially atrophic and atrophic muscle fibres. In line with this skin fibroblasts obtained from the same patient showed accumulation of P56S-VAPB aggregates together with LC3 and p62. Detailed investigations of autophagic flux in cell culture models revealed that P56S-VAPB alters both initial and late steps of the autophagy pathway. Accordingly, electron microscopy complemented with live cell imaging highlighted the impaired fusion of accumulated autophagosomes with lysosomes in cells expressing P56S-VAPB. Consistent with these observations, neuropathological studies of brain and spinal cord of P56S-VAPB transgenic mice revealed signs of neurodegeneration associated with altered protein quality control and defective autophagy. Autophagy and RBP homeostasis are interdependent, as demonstrated by the cytoplasmic mis-localisation of several RBPs including pTDP-43, FUS, Matrin 3 which often sequestered with P56S-VAPB aggregates both in cell culture and in the muscle biopsy of the ALS8 patient. Further confirming the notion that aggregation of the RBPs proceeds through the stress granule (SG) pathway, we found persistent G3BP- and TIAR1-positive SGs in P56S-VAPB expressing cells as well as in the ALS8 patient muscle biopsy. We conclude that P56S-VAPB-ALS8 involves a cohesive pathomechanism of aberrant RBP homeostasis together with dysfunctional autophagy.

Research field(s)
Health Sciences, Biomedical Research, Biochemistry & Molecular Biology

NOMIS Researcher(s)

Published in

May 1, 2021

We analyze the metabolomes of humans, chimpanzees, and macaques in muscle, kidney and three different regions of the brain. Although several compounds in amino acid metabolism occur at either higher or lower concentrations in humans than in the other primates, metabolites downstream of adenylosuccinate lyase, which catalyzes two reactions in purine synthesis, occur at lower concentrations in humans. This enzyme carries an amino acid substitution that is present in all humans today but absent in Neandertals. By introducing the modern human substitution into the genomes of mice, as well as the ancestral, Neandertal-like substitution into the genomes of human cells, we show that this amino acid substitution contributes to much or all of the reduction of de novo synthesis of purines in humans.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

May 1, 2021

Background: Neurofilament light (NfL) is a promising biomarker of early neurodegeneration in Alzheimer’s disease (AD). We examined whether plasma NfL was associated with in vivo amyloid beta and tau, and cognitive performance in non-demented presenilin-1 (PSEN1) E280A mutation carriers. Methods: Twenty-five mutation carriers and 19 non-carriers (age range: 28 to 49 years) were included in this study. Participants underwent 11C Pittsburgh compound B (PiB)-PET (positron emission tomography), flortaucipir–PET, blood sampling, and cognitive testing. Results: Mutation carriers exhibited higher plasma NfL levels than non-carriers. In carriers, higher NfL levels were related to greater regional tau burden and worse cognition, but not amyloid beta load. When we adjusted for age, a proxy of disease progression, elevated plasma NfL levels were only correlated with worse memory recall. Conclusions: Findings support an association between plasma NfL, cognition, and tau pathology in non-demented individuals at genetic risk for developing AD dementia. Plasma NfL may be useful for selecting individuals at increased risk and tracking disease progression in AD.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

April 21, 2021

TREM2 variants increase the risk for Alzheimer’s disease. In this issue of Neuron, Lee et al. demonstrate that TREM2-dependent microglial functions prevent accumulation and spreading of tau, but only in the presence of amyloid pathology. This provides additional fuel for the amyloid cascade hypothesis and supports a protective function of microglia.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

April 19, 2021

We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology

NOMIS Researcher(s)

Published in

April 1, 2021

Background: Neuroinflammation has received growing interest as a therapeutic target in neurodegenerative disorders, including 4-repeat tauopathies. Objectives: The aim of this cross-sectional study was to investigate 18 kDa translocator protein positron emission tomography (PET) as a biomarker for microglial activation in the 4-repeat tauopathies corticobasal degeneration and progressive supranuclear palsy. Methods: Specific binding of the 18 kDa translocator protein tracer 18F-GE-180 was determined by serial PET during pharmacological depletion of microglia in a 4-repeat tau mouse model. The 18 kDa translocator protein PET was performed in 30 patients with corticobasal syndrome (68 ± 9 years, 16 women) and 14 patients with progressive supranuclear palsy (69 ± 9 years, 8 women), and 13 control subjects (70 ± 7 years, 7 women). Group comparisons and associations with parameters of disease progression were assessed by region-based and voxel-wise analyses. Results: Tracer binding was significantly reduced after pharmacological depletion of microglia in 4-repeat tau mice. Elevated 18 kDa translocator protein labeling was observed in the subcortical brain areas of patients with corticobasal syndrome and progressive supranuclear palsy when compared with controls and was most pronounced in the globus pallidus internus, whereas only patients with corticobasal syndrome showed additionally elevated tracer binding in motor and supplemental motor areas. The 18 kDa translocator protein labeling was not correlated with parameters of disease progression in corticobasal syndrome and progressive supranuclear palsy but allowed sensitive detection in patients with 4-repeat tauopathies by a multiregion classifier. Conclusions: Our data indicate that 18F-GE-180 PET detects microglial activation in the brain of patients with 4-repeat tauopathy, fitting to predilection sites of the phenotype. The 18 kDa translocator protein PET has a potential for monitoring neuroinflammation in 4-repeat tauopathies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

April 1, 2021

Along with emergence of the organoids, their application in biomedical research has been currently one of the most fascinating themes. For the past few years, scientists have made significant contributions to deriving organoids representing the whole brain and specific brain regions. Coupled with somatic cell reprogramming and CRISPR/Cas9 editing, the organoid technologies were applied for disease modeling and drug screening. The methods to develop organoids further improved for rapid and efficient generation of cerebral organoids. Additionally, refining the methods to develop the regionally specified brain organoids enabled the investigation of development and interaction of the specific brain regions. Recent studies started resolving the issue in the lack of non-neuroectodermal cells in brain organoids, including vascular endothelial cells and microglia, which play fundamental roles in neurodevelopment and are involved in the pathophysiology of acute and chronic neural disorders. In this review, we highlight recent advances of neuronal organoid technologies, focusing on the region-specific brain organoids and complementation with endothelial cells and microglia, and discuss their potential applications to neuronal diseases.

Research field(s)
Health Sciences, Clinical Medicine, Immunology

NOMIS Researcher(s)

Published in

April 1, 2021

Intronic hexanucleotide repeat expansions (HREs) in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis, a devastating, incurable motoneuron (MN) disease. The mechanism by which HREs trigger pathogenesis remains elusive. The discovery of repeat-Associated non-ATG (RAN) translation of dipeptide repeat proteins (DPRs) from HREs along with reduced exonic C9ORF72 expression suggests gain of toxic functions (GOFs) through DPRs versus loss of C9ORF72 functions (LOFs). Through multiparametric high-content (HC) live profiling in spinal MNs from induced pluripotent stem cells and comparison to mutant FUS and TDP43, we show that HRE C9ORF72 caused a distinct, later spatiotemporal appearance of mainly proximal axonal organelle motility deficits concomitant to augmented DNA double-strand breaks (DSBs), RNA foci, DPRs, and apoptosis. We show that both GOFs and LOFs were necessary to yield the overall C9ORF72 pathology. Increased RNA foci and DPRs concurred with onset of axon trafficking defects, DSBs, and cell death, although DSB induction itself did not phenocopy C9ORF72 mutants. Interestingly, the majority of LOF-specific DEGs were shared with HRE-mediated GOF DEGs. Finally, C9ORF72 LOF was sufficient albeit to a smaller extent to induce premature distal axonal trafficking deficits and increased DSBs.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

April 1, 2021

A growing body of research suggests that perception and cognition are affected by fluctuating bodily states. For example, the rate of information sampling is coupled with cardiac phases. However, the benefits of such spontaneous coupling between bodily oscillations and decision-making remains unclear. Here, we studied the role of the cardiac cycle in information sampling by testing whether sequential information sampling phase-locked to systolic or diastolic parts of the cardiac cycle impacts the rate of information gathering and processing. To this aim, we employed a modified Information Sampling Task, a standard measure of the rate of information gathering before reaching a decision, in which the onset of new information delivery in each trial was coupled either to cardiac systole or diastole. Information presented within cardiac systole did not significantly modulate the information processing in a manner that would produce clear behavioral changes. However, we found evidence suggesting that higher interoceptive awareness increased accuracy, especially in the costly version of the task, when new information was sequentially presented at systole. Overall, our results add to a growing body of research on body-brain interactions and suggest that our internal bodily rhythms (i.e., heartbeats) and our awareness of them can interact with the way we process the noisy world around us.

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology

NOMIS Researcher(s)

March 4, 2021

Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson’s disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated (P < 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- (CCND1, CCND2, and CDK4 at P < 0.01; E2F3, MYC at P < 0.05) and one gene downregulated (CDKN1C at P < 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

March 2, 2021
We appreciate the interest and comments on our article reporting a novel gut microbiome signature for predicting liver cirrhosis (). Dr. Chen raises concerns about the impact of proton pump inhibitor (PPI) treatment on the gut microbial profiles of cirrhosis patients in our main cohort (; ). He cites evidence that 4 species in our 19-species signature for cirrhosis (Veillonella parvula, Veillonella atypica, Streptococcus parasanguinis, and Streptococcus salivarius) are known to be impacted by PPI treatment. According to his analysis, these species alone were sufficient to detect cirrhosis in the Qin and Iebba cohorts. The question at hand is whether PPI usage in our training cohort may have skewed and thus compromised our gut microbiome signature for cirrhosis.
To address whether our 19-species signature remains valid, independent of PPI treatment status (Table S1), we first reviewed all 81 subjects in our training cohort (54 non-NAFLD controls and 27 NAFLD-cirrhosis patients) and identified 13 individuals who were using PPIs (4 non-NAFLD controls and 9 NAFLD-cirrhosis patients). After excluding those 13 subjects on PPIs, we retrained our 19-species Random Forest (RF) model on the revised cohort comprising only the 68 remaining non-PPI subjects (50 non-NAFLD controls and 18 NAFLD-cirrhosis patients) for cirrhosis prediction. For detection of cirrhosis, the model achieved an accuracy of AUC (area under the curve) 0.891, which is comparable to our original AUC of 0.91 (Figure S1A). In our original study, we included age during machine training as a default. Therefore, we also examined the 19 species+age in the non-PPI training set and achieved an AUC of 0.896, which again is comparable to our original AUC of 0.91 (Figure S1B). Furthermore, we tested the models comprising 19 species or 19 species+age with the independent dataset from the Qin et al. study (merged discovery and validation set, 114 controls and 123 cirrhosis) (). Notably, we still obtained AUCs of 0.851 and 0.832 for validation and testing scores, respectively (Figures S1C and S1D). Thus, even after removing subjects on PPIs from the training cohort, the revised model with 19 species still detected cirrhosis with high accuracy. This suggests the impact of PPI usage on the signature was minimal.
We observed no significant difference in the diagnostic accuracy of our gut microbiome signature for cirrhosis, regardless of whether it was evaluating mixed or only non-PPI cohorts. Although we agree that PPI drugs may have an effect on gut microbiota as a whole, our 19-species signature is robust and retains its diagnostic potential for distinguishing liver cirrhosis, independent of PPI treatment. Future studies encompassing more clinical samples and longitudinal follow-up will allow us to understand the specific effects of different classes of perturbants and provide more accuracy and robustness to power the machine-learning-based prediction model (; ).

Research field(s)
Clinical Medicine

It was recently shown that the major genetic risk factor associated with becoming severely ill with COVID-19 when infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is inherited from Neandertals. New, larger genetic association studies now allow additional genetic risk factors to be discovered. Using data from the Genetics of Mortality in Critical Care (GenOMICC) consortium, we show that a haplotype at a region on chromosome 12 associated with requiring intensive care when infected with the virus is inherited from Neandertals. This region encodes proteins that activate enzymes that are important during infections with RNA viruses. In contrast to the previously described Neandertal haplotype that increases the risk for severe COVID-19, this Neandertal haplotype is protective against severe disease. It also differs from the risk haplotype in that it has a more moderate effect and occurs at substantial frequencies in all regions of the world outside Africa. Among ancient human genomes in western Eurasia, the frequency of the protective Neandertal haplotype may have increased between 20,000 and 10,000 y ago and again during the past 1,000 y.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

March 1, 2021

Biomolecular condensates are membraneless intracellular assemblies that often form via liquid−liquid phase separation and have the ability to concentrate biopolymers. Research over the past 10 years has revealed that condensates play fundamental roles in cellular organization and physiology, and our understanding of the molecular principles, components and forces underlying their formation has substantially increased. Condensate assembly is tightly regulated in the intracellular environment, and failure to control condensate properties, formation and dissolution can lead to protein misfolding and aggregation, which are often the cause of ageing-associated diseases. In this Review, we describe the mechanisms and regulation of condensate assembly and dissolution, highlight recent advances in understanding the role of biomolecular condensates in ageing and disease, and discuss how cellular stress, ageing-related loss of homeostasis and a decline in protein quality control may contribute to the formation of aberrant, disease-causing condensates. Our improved understanding of condensate pathology provides a promising path for the treatment of protein aggregation diseases.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology