Insight
is our reward

Publications in Biomedical Research by NOMIS researchers

NOMIS Researcher(s)

Published in

March 29, 2022

Dravet syndrome is a neurodevelopmental disorder characterized by epilepsy, intellectual disability, and sudden death due to pathogenic variants in SCN1A with loss of function of the sodium channel subunit Nav1.1. Nav1.1-expressing parvalbumin GABAergic interneurons (PV-INs) from young Scn1a+/− mice show impaired action potential generation. An approach assessing PV-IN function in the same mice at two time points shows impaired spike generation in all Scn1a+/− mice at postnatal days (P) 16–21, whether deceased prior or surviving to P35, with normalization by P35 in surviving mice. However, PV-IN synaptic transmission is dysfunctional in young Scn1a+/− mice that did not survive and in Scn1a+/− mice ≥ P35. Modeling confirms that PV-IN axonal propagation is more sensitive to decreased sodium conductance than spike generation. These results demonstrate dynamic dysfunction in Dravet syndrome: combined abnormalities of PV-IN spike generation and propagation drives early disease severity, while ongoing dysfunction of synaptic transmission contributes to chronic pathology.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

March 18, 2022

Maintenance of energy balance is essential for overall organismal health. Mammals have evolved complex regulatory mechanisms that control energy intake and expenditure. Traditionally, studies have focused on understanding the role of macronutrient physiology in energy balance. In the present study, we examined the role of the essential micronutrient iron in regulating energy balance. We found that a short course of dietary iron caused a negative energy balance resulting in a severe whole body wasting phenotype. This disruption in energy balance was because of impaired intestinal nutrient absorption. In response to dietary iron-induced negative energy balance, adipose triglyceride lipase (ATGL) was necessary for wasting of subcutaneous white adipose tissue and lipid mobilization. Fat-specific ATGL deficiency protected mice from fat wasting, but caused a severe cachectic response in mice when fed iron. Our work reveals a mechanism for micronutrient control of lipolysis that is necessary for regulating mammalian energy balance.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

Published in

March 10, 2022

The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality1. Although an increasing number of interventions show promise for rejuvenation2, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, haematopoietic stem cells and hepatocytes are among those cell types that are especially responsive. On the pathway level, young blood invokes new gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. We observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it in select cell types. Together, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

Biomolecular condensates provide distinct compartments that can localize and organize biochemistry inside cells. Recent evidence suggests that condensate formation is prevalent in the cell nucleus. To understand how different components of the nucleus interact during condensate formation is an important challenge. In particular, the physics of co-condensation of proteins together with nucleic acids remains elusive. Here we use optical tweezers to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) forms liquid-like assemblies in vitro, by co-condensing together with individual DNA molecules. Through progressive forceinduced peeling of dsDNA, buffer exchange, and force measurements, we show that FUS adsorbing in a single layer on DNA effectively generates a sticky FUS-DNA polymer that can collapse to form a liquid-like FUS-DNA co-condensate. Condensation occurs at constant DNA tension for double-stranded DNA, which is a signature of phase separation. We suggest that co-condensation mediated by protein monolayer adsorption on nucleic acids is an important mechanism for intracellular compartmentalization.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

March 4, 2022

It is widely believed that cellular senescence plays a critical role in both aging and cancer, and that senescence is a fundamental, permanent growth arrest that somatic cells cannot avoid. Here we show that Myc plays an important role in self-renewal of esophageal epithelial cells, contributing to their resistance to cellular senescence. Myc is homogeneously expressed in basal cells of the esophageal epithelium and Myc positively regulates their self-renewal by maintaining their undifferentiated state. Indeed, Myc knockout induced a loss of the undifferentiated state of esophageal epithelial cells resulting in cellular senescence while forced MYC expression promoted oncogenic cell proliferation. A superoxide scavenger counteracted Myc knockout-induced senescence, therefore suggesting that a mitochondrial superoxide takes part in inducing senescence. Taken together, these analyses reveal extremely low levels of cellular senescence and senescence-associated phenotypes in the esophageal epithelium, as well as a critical role for Myc in self-renewal of basal cells in this organ. This provides new avenues for studying and understanding the links between stemness and resistance to cellular senescence.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

March 1, 2022

Glacier-fed streams (GFSs) are extreme and rapidly vanishing ecosystems, and yet they harbor diverse microbial communities. Although our understanding of the GFS microbiome has recently increased, we do not know which microbial clades are ecologically successful in these ecosystems, nor do we understand potentially underlying mechanisms. Ecologically successful clades should be more prevalent across GFSs compared to other clades, which should be reflected as clade-wise distinctly low phylogenetic turnover. However, methods to assess such patterns are currently missing. Here we developed and applied a novel analytical framework, “phyloscore analysis”, to identify clades with lower spatial phylogenetic turnover than other clades in the sediment microbiome across twenty GFSs in New Zealand. These clades constituted up to 44% and 64% of community α-diversity and abundance, respectively. Furthermore, both their α-diversity and abundance increased as sediment chlorophyll a decreased, corroborating their ecological success in GFS habitats largely devoid of primary production. These clades also contained elevated levels of putative microdiversity than others, which could potentially explain their high prevalence in GFSs. This hitherto unknown microdiversity may be threatened as glaciers shrink, urging towards further genomic and functional exploration of the GFS microbiome.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

March 1, 2022

Pancreatic β cells secrete insulin in response to glucose, a process that is regulated at multiple levels, including a network of input signals from other organ systems. Impaired islet function contributes to the pathogenesis of type 2 diabetes mellitus (T2DM), and targeting inter-organ communications, such as GLP-1 signalling, to enhance β-cell function has been proven to be a successful therapeutic strategy in the last decade. In this review, we will discuss recent advances in inter-organ communication from the metabolic, immune and neural system to pancreatic islets, their biological implication in normal pancreas endocrine function and their role in the (mal)adaptive responses of islet to nutrition-induced stress.

Research field(s)
Health Sciences, Biomedical Research, Biochemistry & Molecular Biology

NOMIS Researcher(s)

Published in

March 1, 2022

Nuclear pore complexes (NPCs) bridge the nucleus and the cytoplasm and are indispensable for crucial cellular activities, such as bidirectional molecular trafficking and gene transcription regulation. The discovery of long-lived proteins (LLPs) in NPCs from postmitotic cells raises the exciting possibility that the maintenance of NPC integrity might play an inherent role in lifelong cell function. Age-dependent deterioration of NPCs and loss of nuclear integrity have been linked to age-related decline in postmitotic cell function and degenerative diseases. In this review, we discuss our current understanding of NPC maintenance in proliferating and postmitotic cells, and how malfunction of nucleoporins (Nups) might contribute to the pathogenesis of various neurodegenerative and cardiovascular diseases.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

March 1, 2022

A change: of mind in response to social influence could be driven : by informational conformity: to increase accuracy, or by normative conformity to comply with social norms such as reciprocity. Disentangling the behavioural, cognitive, and neurobiological underpinnings of informational and normative conformity have proven elusive. Here, participants underwent fMRI while performing a perceptual task that involved both advice-taking and advice-giving to human and computer partners. The concurrent inclusion of 2 different social roles and 2 different social partners revealed distinct behavioural and neural markers for informational and normative conformity. Dorsal anterior cingulate cortex (dACC) BOLD response tracked informational conformity towards both human and computer but tracked normative conformity only when interacting with humans. A network of brain areas (dorsomedial prefrontal cortex (dmPFC) and temporoparietal junction (TPJ)) that tracked normative conformity increased their functional coupling with the dACC when interacting with humans. These findings enable differentiating the neural mechanisms by which different types of conformity shape social changes of mind.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

March 1, 2022

Contractile injection systems (CISs) are phage tail-like nanomachines, mediating bacterial cell–cell interactions as either type VI secretion systems (T6SSs) or extracellular CISs (eCISs). Bioinformatic studies uncovered a phylogenetic group of hundreds of putative CIS gene clusters that are highly diverse and widespread; however, only four systems have been characterized. Here we studied a putative CIS gene cluster in the marine bacterium Algoriphagus machipongonensis. Using an integrative approach, we show that the system is compatible with an eCIS mode of action. Our cryo-electron microscopy structure revealed several features that differ from those seen in other CISs: a ‘cap adaptor’ located at the distal end, a ‘plug’ exposed to the tube lumen, and a ‘cage’ formed by massive extensions of the baseplate. These elements are conserved in other CISs, and our genetic tools identified that they are required for assembly, cargo loading and function. Furthermore, our atomic model highlights specific evolutionary hotspots and will serve as a framework for understanding and re−engineering CISs.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

March 1, 2022

Contractile injection systems (CISs) mediate cell–cell interactions by phage tail-like structures, using two distinct modes of action: extracellular CISs are released into the medium, while type 6 secretion systems (T6SSs) are attached to the cytoplasmic membrane and function upon cell–cell contact. Here, we characterized a CIS in the multicellular cyanobacterium Anabaena, with features distinct from extracellular CISs and T6SSs. Cryo-electron tomography of focused ion beam-milled cells revealed that CISs were anchored in thylakoid membrane stacks, facing the cell periphery. Single particle cryo-electron microscopy showed that this unique in situ localization was mediated by extensions of tail fibre and baseplate components. On stress, cyanobacteria induced the formation of ghost cells, presenting thylakoid-anchored CISs to the environment. Functional assays suggest that these CISs may mediate ghost cell formation and/or interactions of ghost cells with other organisms. Collectively, these data provide a framework for understanding the evolutionary re-engineering of CISs and potential roles of these CISs in cyanobacterial programmed cell death.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

February 17, 2022

ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

February 1, 2022

Eukaryotic genomes are known to have garnered innovations from both archaeal and bacterial domains but the sequence of events that led to the complex gene repertoire of eukaryotes is largely unresolved. Here, through the enrichment of hydrothermal vent microorganisms, we recovered two circularized genomes of Heimdallarchaeum species that belong to an Asgard archaea clade phylogenetically closest to eukaryotes. These genomes reveal diverse mobile elements, including an integrative viral genome that bidirectionally replicates in a circular form and aloposons, transposons that encode the 5,000 amino acid-sized proteins Otus and Ephialtes. Heimdallaechaeal mobile elements have garnered various genes from bacteria and bacteriophages, likely playing a role in shuffling functions across domains. The number of archaea- and bacteria-related genes follow strikingly different scaling laws in Asgard archaea, exhibiting a genome size-dependent ratio and a functional division resembling the bacteria- and archaea-derived gene repertoire across eukaryotes. Bacterial gene import has thus likely been a continuous process unaltered by eukaryogenesis and scaled up through genome expansion. Our data further highlight the importance of viewing eukaryogenesis in a pan-Asgard context, which led to the proposal of a conceptual framework, that is, the Heimdall nucleation–decentralized innovation–hierarchical import model that accounts for the emergence of eukaryotic complexity.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

February 1, 2022

The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, Kd, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

February 1, 2022

During their co-evolution with pathogens, hosts acquired defensive health strategies that allow them to maintain their health or promote recovery when challenged with infections. The cooperative defense system is a largely unexplored branch of these evolved defense strategies. Cooperative defenses limit physiological damage and promote health without having a negative impact on a pathogen’s ability to survive and replicate within the host. Here, we review recent discoveries in the new field of cooperative defenses using the model pathogens Citrobacter rodentium and Salmonella enterica. We discuss not only host-encoded but also pathogen-encoded mechanisms of cooperative defenses. Cooperative defenses remain an untapped resource in clinical medicine. With a global pandemic exacerbated by a lack of vaccine access and a worldwide rise in antibiotic resistance, the study of cooperative defenses offers an opportunity to safeguard health in the face of pathogenic infection.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

February 1, 2022

Mouthwash is a commonly used product and has been proposed as an alternative intervention to prevent gonorrhea transmission. However, the long-term effects of mouthwash on the oral microbiota are largely unknown. We investigated the impact of 12 weeks of daily mouthwash use on the oropharyngeal microbiota in a subset of men who have sex with men who participated in a randomized trial comparing the efficacy of two alcohol-free mouthwashes for the prevention of gonorrhea. We characterized the oropharyngeal microbiota using 16S rRNA gene sequencing of tonsillar fossae samples collected before and after 12 weeks of daily use of Listerine mouthwash or Biotène dry mouth oral rinse. Permutational multivariate analysis of variance (PERMANOVA) was used to assess differences in oropharyngeal microbiota composition following mouthwash use. Differential abundance testing was performed using ALDEx2, with false-discovery rate correction. A total of 306 samples from 153 men were analyzed (Listerine, n = 78 and Biotène, n = 75). There was no difference in the overall structure of the oropharyngeal microbiota following Listerine or Biotène use (PERMANOVA P = 0.413 and P = 0.331, respectively). Although no bacterial taxa were significantly differentially abundant following Listerine use, we observed a small but significant decrease in the abundance of both Streptococcus and Leptotrichia following Biotène use. Overall, our findings suggest that daily use of antiseptic mouthwash has minimal long-term effects on the composition of the oropharyngeal microbiota. IMPORTANCE Given the role of the oral microbiota in human health, it is important to understand if and how external factors influence its composition. Mouthwash use is common in some populations, and the use of antiseptic mouthwash has been proposed as an alternative intervention to prevent gonorrhea transmission. However, the long-term effect of mouthwash use on the oral microbiota composition is largely unknown. We found that daily use of two different commercially available mouthwashes had limited long-term effects on the composition of the oropharyngeal microbiota over a 12-week period. The results from our study and prior studies highlight that different mouthwashes may differentially affect the oral microbiome composition and that further studies are needed to determine if mouthwash use induces short-term changes to the oral microbiota that may have detrimental effects.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

January 4, 2022

Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.

Research field(s)
Health Sciences, Biomedical Research, Biophysics

NOMIS Researcher(s)

Published in

January 1, 2022

While acetylated, RNA-binding-deficient TDP-43 reversibly phase separates within nuclei into complex droplets (anisosomes) comprised of TDP-43-containing liquid outer shells and liquid centres of HSP70-family chaperones, cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we show that transient oxidative stress, proteasome inhibition or inhibition of the ATP-dependent chaperone activity of HSP70 provokes reversible cytoplasmic TDP-43 de-mixing and transition from liquid to gel/solid, independently of RNA binding or stress granules. Isotope labelling mass spectrometry was used to identify that phase-separated cytoplasmic TDP-43 is bound by the small heat-shock protein HSPB1. Binding is direct, mediated through TDP-43’s RNA binding and low-complexity domains. HSPB1 partitions into TDP-43 droplets, inhibits TDP-43 assembly into fibrils, and is essential for disassembly of stress-induced TDP-43 droplets. A decrease in HSPB1 promotes cytoplasmic TDP-43 de-mixing and mislocalization. HSPB1 depletion was identified in spinal motor neurons of patients with ALS containing aggregated TDP-43. These findings identify HSPB1 to be a regulator of cytoplasmic TDP-43 phase separation and aggregation.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

January 1, 2022

Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples — so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epi-fluorescence imaging for explicitly measuring the Brillouin shift, RI and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample — a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

January 1, 2022

Halorhodospira halophila, one of the most-xerophilic halophiles, inhabits biophysically stressful and energetically expensive, salt-saturated alkaline brines. Here, we report an additional stress factor that is biotic: a diminutive Candidate-Phyla-Radiation bacterium, that we named ‘Ca. Absconditicoccus praedator’ M39-6, which predates H. halophila M39-5, an obligately photosynthetic, anaerobic purple-sulfur bacterium. We cultivated this association (isolated from the hypersaline alkaline Lake Hotontyn Nur, Mongolia) and characterized their biology. ‘Ca. Absconditicoccus praedator’ is the first stably cultivated species from the candidate class-level lineage Gracilibacteria (order-level lineage Absconditabacterales). Its closed-and-curated genome lacks genes for the glycolytic, pentose phosphate- and Entner–Doudoroff pathways which would generate energy/reducing equivalents and produce central carbon currencies. Therefore, ‘Ca. Absconditicoccus praedator’ is dependent on host-derived building blocks for nucleic acid-, protein-, and peptidoglycan synthesis. It shares traits with (the uncultured) ‘Ca. Vampirococcus lugosii’, which is also of the Gracilibacteria lineage. These are obligate parasitic lifestyle, feeding on photosynthetic anoxygenic Gammaproteobacteria, and absorption of host cytoplasm. Commonalities in their genomic composition and structure suggest that the entire Absconditabacterales lineage consists of predatory species which act to cull the populations of their respective host bacteria. Cultivation of vampire : host associations can shed light on unresolved aspects of their metabolism and ecosystem dynamics at life-limiting extremes.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

December 17, 2021

Competition for social influence is a major force shaping societies, from baboons guiding their troop in different directions, to politicians competing for voters, to influencers competing for attention on social media. Social influence is invariably a competitive exercise with multiple influencers competing for it. We study which strategy maximizes social influence under competition. Applying game theory to a scenario where two advisers compete for the attention of a client, we find that the rational solution for advisers is to communicate truthfully when favored by the client, but to lie when ignored. Across seven pre-registered studies, testing 802 participants, such a strategic adviser consistently outcompeted an honest adviser. Strategic dishonesty outperformed truth-telling in swaying individual voters, the majority vote in anonymously voting groups, and the consensus vote in communicating groups. Our findings help explain the success of political movements that thrive on disinformation, and vocal underdog politicians with no credible program.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology