Insight
is our reward

Publications in Neurology & Neurosurgery by NOMIS researchers

Introduction: The Alzheimer’s Prevention Initiative Colombia Trial is a collaborative project involving the Neurosciences Group of Antioquia, Genentech/Roche, and the Banner Alzheimer’s Institute, studying whether crenezumab can delay or prevent the clinical onset of Alzheimer’s disease in cognitively unimpaired individuals who carry the PSEN1 E280A mutation. In an effort to optimize participant compliance and adherence and maintain interest in the trial for its duration, the Neurosciences Group of Antioquia developed an “Adherence/Retention Plan.” This plan identifies potential barriers to trial adherence related to characteristics of the participants and study partners, protocol design, sponsors, investigators, environmental factors, and characteristics of this population in general and identifies potential solutions to these barriers. Methods: Neurosciences Group of Antioquia designed and implemented a number of strategies including a) a prescreening process that emphasized detailed and staged informed consent involving the participant and family and/or friends, b) a schedule of visits and assessments designed to minimize burden while achieving the trial’s aims, c) appointment reminders, d) reimbursement for transportation and missed work, e) meals during study visits, f) birthday cards, g) quarterly newsletters, h) annual in-person feedback meetings, i) a supplemental health plan to participants, and j) a social plan to support family members. All the methods used in this plan were approved by local ethics committees. Results: By the end of the fourth year of the trial, participant retention was 94.0%, with most participants reporting that they felt “very satisfied” with their participation in the trial. Discussion: The Adherence/Retention Plan plays a crucial role in maintaining adherence and compliance needed to achieve the ambitious goals of the Alzheimer’s Prevention Initiative-Colombia Autosomal Dominant Alzheimer’s Disease Trial and may offer guideposts for other prevention trials.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

January 1, 2018

Neurodegenerative diseases pose a complex field with various neuronal subtypes and distinct differentially affected intra-neuronal compartments. Modelling of neurodegeneration requires faithful in vitro separation of axons and dendrites, their distal and proximal compartments as well as organelle tracking with defined retrograde versus anterograde directionality. We use microfluidic chambers to achieve compartmentalization and established high throughput live organelle imaging at standardized distal and proximal axonal readout sites in iPSC-derived spinal motor neuron cultures from human amyotrophic lateral sclerosis patients to study trafficking phenotypes of potential disease relevance. Our semi-automated pipeline of organelle tracking with FIJI and KNIME yields quantitative, multiparametric high content phenotypic signatures of organelle morphology and their trafficking in axons. We provide here the resultant large datasets to enable systemic signature interrogations for comprehensive and predictive disease modelling, mechanistic dissection and secondary hit validation (e.g. drug screens, genetic screens). Due to the nearly complete coverage of analysed motility events, our quantitative method yields a bias-free statistical power superior over common analyses of a handful of manual kymographs.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

November 1, 2017

The sense of body-ownership relies on the representation of both interoceptive and exteroceptive signals coming from one’s body. However, it remains unknown how the integration of bodily signals coming from “outside” and “inside” the body is instantiated in the brain. Here, we used a modified version of the Enfacement Illusion to investigate whether the integration of visual and cardiac information can alter self-face recognition (Experiment 1) and neural responses to heartbeats (Experiment 2). We projected a pulsing shade, that was synchronous or asynchronous with the participant’s heartbeat, onto a picture depicting the participant’s face morphed with the face of an unfamiliar other. Results revealed that synchronous (vs. asynchronous) cardio-visual stimulation led to increased self-identification with the other’s face (Experiment 1), while during stimulation, synchronicity modulated the amplitude of the Heartbeat Evoked Potential, an electrophysiological index of cortical interoceptive processing (Experiment 2). Importantly, the magnitude of the illusion-related effects was dependent on, and increased linearly, with the participants’ Interoceptive Accuracy. These results provide the first direct neural evidence for the integration of interoceptive and exteroceptive signals in bodily self-awareness.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

September 15, 2017

Water deprivation produces a drive to seek and consume water. How neural activity creates this motivation remains poorly understood. We used activity-dependent genetic labeling to characterize neurons activated by water deprivation in the hypothalamic median preoptic nucleus (MnPO). Single-cell transcriptional profiling revealed that dehydration-activated MnPO neurons consist of a single excitatory cell type. After optogenetic activation of these neurons, mice drank water and performed an operant lever-pressing task for water reward with rates that scaled with stimulation frequency. This stimulation was aversive, and instrumentally pausing stimulation could reinforce lever-pressing. Activity of these neurons gradually decreased over the course of an operant session. Thus, the activity of dehydration-activated MnPO neurons establishes a scalable, persistent, and aversive internal state that dynamically controls thirst-motivated behavior.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

August 1, 2017

Translation of the expanded (ggggcc)n repeat in C9orf72 patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) causes abundant poly-GA inclusions. To elucidate their role in pathogenesis, we generated transgenic mice expressing codon-modified (GA)149 conjugated with cyan fluorescent protein (CFP). Transgenic mice progressively developed poly-GA inclusions predominantly in motoneurons and interneurons of the spinal cord and brain stem and in deep cerebellar nuclei. Poly-GA co-aggregated with p62, Rad23b and the newly identified Mlf2, in both mouse and patient samples. Consistent with the expression pattern, 4-month-old transgenic mice showed abnormal gait and progressive balance impairment, but showed normal hippocampus-dependent learning and memory. Apart from microglia activation we detected phosphorylated TDP-43 but no neuronal loss. Thus, poly-GA triggers behavioral deficits through inflammation and protein sequestration that likely contribute to the prodromal symptoms and disease progression of C9orf72 patients.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

June 1, 2017

Crystal structures can identify ligand-receptor interactions and assist the development of novel therapeutics, but experimental challenges sometimes necessitate the use of homologous proteins. Tropisetron is an orthosteric ligand at both 5-HT3 and α7 nACh receptors and its binding orientation has been determined in the structural homologue AChBP (pdbid: 2WNC). Co-crystallisation with a structurally-related ligand, granisetron, reveals an almost identical orientation (pdbid; 2YME). However, there is a >1000-fold difference in the affinity of tropisetron at 5-HT3 versus α7 nACh receptors, and α7 nACh receptors do not bind granisetron. These striking pharmacological differences prompt questions about which receptor the crystal structures most closely represent and whether the ligand orientations are correct. Here we probe the binding orientation of tropisetron and granisetron at 5-HT3 receptors by in silico modelling and docking, radioligand binding on cysteine-substituted 5-HT3 receptor mutants transiently expressed in HEK 293 cells, and synthetic modification of the ligands. For 15 of the 23 cysteine substitutions, the effects on tropisetron and granisetron were different. Structure-activity relationships on synthesised derivatives of both ligands were also consistent with different orientations, revealing that contrary to the crystallographic evidence from AChBP, the two ligands adopt different orientations in the 5-HT3 receptor binding site. Our results show that even quite structurally similar molecules can adopt different orientations in the same binding site, and that caution may be needed when using homologous proteins to predict ligand binding.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

May 17, 2017

The successful planning and execution of adaptive behaviors in mammals may require long-range coordination of neural networks throughout cerebral cortex. The neuronal implementation of signals that could orchestrate cortex-wide activity remains unclear. Here, we develop and apply methods for cortex-wide Ca2+ imaging in mice performing decision-making behavior and identify a global cortical representation of task engagement encoded in the activity dynamics of both single cells and superficial neuropil distributed across the majority of dorsal cortex. The activity of multiple molecularly defined cell types was found to reflect this representation with type-specific dynamics. Focal optogenetic inhibition tiled across cortex revealed a crucial role for frontal cortex in triggering this cortex-wide phenomenon; local inhibition of this region blocked both the cortex-wide response to task-initiating cues and the voluntary behavior. These findings reveal cell-type-specific processes in cortex for globally representing goal-directed behavior and identify a major cortical node that gates the global broadcast of task-related information.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

May 1, 2017

Corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and a subset of frontotemporal dementia (FTD) are neurodegenerative disorders characterized by tau inclusions in neurons and glia (tauopathies). Although clinical, pathological and genetic evidence suggests overlapping pathobiology between CBD, PSP, and FTD, the relationship between these disorders is still not well understood. Using summary statistics (odds ratios and p values) from large genome-wide association studies (total n = 14,286 cases and controls) and recently established genetic methods, we investigated the genetic overlap between CBD and PSP and CBD and FTD. We found up to 800-fold enrichment of genetic risk in CBD across different levels of significance for PSP or FTD. In addition to NSF (tagging the MAPT H1 haplotype), we observed that SNPs in or near MOBP, CXCR4, EGFR, and GLDC showed significant genetic overlap between CBD and PSP, whereas only SNPs tagging the MAPT haplotype overlapped between CBD and FTD. The risk alleles of the shared SNPs were associated with expression changes in cis-genes. Evaluating transcriptome levels across adult human brains, we found a unique neuroanatomic gene expression signature for each of the five overlapping gene loci (omnibus ANOVA p < 2.0 × 10−16). Functionally, we found that these shared risk genes were associated with protein interaction and gene co-expression networks and showed enrichment for several neurodevelopmental pathways. Our findings suggest: (1) novel genetic overlap between CBD and PSP beyond the MAPT locus; (2) strong ties between CBD and FTD through the MAPT clade, and (3) unique combinations of overlapping genes that may, in part, influence selective regional or neuronal vulnerability observed in specific tauopathies.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

April 21, 2017

Frontotemporal Lobar Degeneration (FTLD) encompasses certain related neurodegenerative disorders which alter behaviour, personality and language. Heterogeneous ribonuclear proteins (hnRNPs) maintain RNA metabolism and changes in their function may underpin the pathogenesis of FTLD. Immunostaining for hnRNP A1, A2/B1 and A3 was performed on sections of temporal cortex with hippocampus from 61 patients with FTLD, stratified by pathological hallmarks into FTLD-tau and FTLD-TDP type A, B and C subtypes, and by genetics into patients with C9orf72 expansions, MAPT or GRN mutations, or those without known mutation. Four patients with Motor Neurone Disease (MND) with C9orf72 expansions and 10 healthy controls were also studied. Semi-quantitative analysis assessed hnRNP staining intensity in dentate gyrus (DG) and CA4 region of hippocampus, and temporal cortex (Tcx) in the different pathological and genetic groups.Immunostaining for hnRNP A1, A2/B1 and A3 revealed no consistent changes in pattern or amount of physiological staining across any of the pathological or genetic groups. No immunostaining of any inclusions resembling TDP-43 immunoreactive neuronal cytoplasmic inclusions or dystrophic neurites, was seen in either Tcx or DG of the hippocampus in any of the FTLD cases investigated for hnRNP A1, A2/B1 and A3. However, immunostaining for hnRNP A3 showed that inclusion bodies, resembling those TDP-43 negative, p62-immunopositive structures containing dipeptide repeat proteins (DPR) were variably observed in hippocampus and cerebellum. The proportion of cases showing hnRNP A3-immunoreactive DPR, and the number of hnRNP A3-positive inclusions within cases, was significantly greater in DG than in cells of CA4 region and cerebellum, but the latter was significantly less in all three regions compared to that detected by p62 immunostaining.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

April 1, 2017

Epibatidine is an alkaloid toxin that binds with high affinity to nicotinic and muscarinic acetylcholine receptors, and has been extensively used as a research tool. To examine binding interactions at the nicotinic receptor, it has been co-crystallised with the structural homologue acetylcholine binding protein (AChBP; PDB ID 2BYQ), and with an AChBP chimaera (3SQ6) that shares 64% sequence identity with the α7 nACh receptor. However, the binding orientations revealed by AChBP co-crystal structures may not precisely represent their receptor homologues and experimental evidence is needed to verify the ligand poses. Here we identify potential binding site interactions between epibatidine and AChBP residues, and substitute equivalent positions in the α7 nACh receptor. The effects of these are probed by [3H]epibatidine binding following the expression α7 nACh receptor cysteine mutants in HEK 293 cells. Of the sixteen mutants created, the affinity of epibatidine was unaffected by the substitutions Q55C, L106C, L116C, T146C, D160C and S162C, reduced by C186A and C187A, increased by Q114C and S144C, and abolished by W53C, Y91C, N104C, W145C, Y184C and Y191C. These results are consistent with the predicted orientations in AChBP and suggest that epibatidine is likely to occupy a similar location at α7 nACh receptors. We speculate that steric constraints placed upon the C-5 position of the pyridine ring in 3SQ6 may account for the relatively poor affinities of epibatidine derivatives that are substituted at this position.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

April 14, 2016

Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson’s disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

January 1, 2016

The beta amyloid (Aβ) and other aggregating proteins in the brain increase with age and are frequently found within neurons. The mechanistic relationship between intracellular amyloid, aging and neurodegeneration is not, however, well understood. We use a proteotoxicity model based upon the inducible expression of Aβ in a human central nervous system nerve cell line to characterize a distinct form of nerve cell death caused by intracellular Aβ. It is shown that intracellular Aβ initiates a toxic inflammatory response leading to the cell’s demise. Aβ induces the expression of multiple proinflammatory genes and an increase in both arachidonic acid and eicosanoids, including prostaglandins that are neuroprotective and leukotrienes that potentiate death. Cannabinoids such as tetrahydrocannabinol stimulate the removal of intraneuronal Aβ, block the inflammatory response, and are protective. Altogether these data show that there is a complex and likely autocatalytic inflammatory response within nerve cells caused by the accumulation of intracellular Aβ, and that this early form of proteotoxicity can be blocked by the activation of cannabinoid receptors.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

January 1, 2015

The pharmacological characterization of ligands depends upon the ability to accurately measure their binding properties. Fluorescence provides an alternative to more traditional approaches such as radioligand binding. Here we describe the binding and spectroscopic properties of eight fluorescent 5-HT3 receptor ligands. These were tested on purified receptors, expressed receptors on live cells, or in vivo. All compounds had nanomolar affinities with fluorescent properties extending from blue to near infra-red emission. A fluorescein-derivative had the highest affinity as measured by fluorescence polarization (FP; 1.14 nM), flow cytometry (FC; 3.23 nM) and radioligand binding (RB; 1.90 nM). Competition binding with unlabeled 5-HT3 receptor agonists (5-HT, mCPBG, quipazine) and antagonists (granisetron, palonosetron, tropisetron) yielded similar affinities in all three assays. When cysteine substitutions were introduced into the 5-HT3 receptor binding site the same changes in binding affinity were seen for both granisetron and the fluorescein-derivative, suggesting that they both adopt orientations that are consistent with co-crystal structures of granisetron with a homologous protein (5HTBP). As expected, in vivo live imaging in anaesthetized mice revealed staining in the abdominal cavity in intestines, but also in salivary glands. The unexpected presence of 5-HT3 receptors in mouse salivary glands was confirmed by Western blots. Overall, these results demonstrate the wide utility of our new high-affinity fluorescently-labeled 5-HT3 receptor probes, ranging from in vitro receptor pharmacology, including FC and FP ligand competition, to live imaging of 5-HT3 expressing tissues.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

November 1, 2014

Background There is growing interest in the evaluation of preclinical Alzheimer’s disease (AD) treatments. As a result, there is a need to identify a cognitive composite that is sensitive to track preclinical AD decline to be used as a primary endpoint in treatment trials. Methods Longitudinal data from initially cognitively normal, 70- to 85-year-old participants in three cohort studies of aging and dementia from the Rush Alzheimer’s Disease Center were examined to empirically define a composite cognitive endpoint that is sensitive to detect and track cognitive decline before the onset of cognitive impairment. The mean-to-standard deviation ratios (MSDRs) of change over time were calculated in a search for the optimal combination of cognitive tests/subtests drawn from the neuropsychological battery in cognitively normal participants who subsequently progressed to clinical stages of AD during 2- and 5-year periods, using data from those who remained unimpaired during the same period to correct for aging and practice effects. Combinations that performed well were then evaluated for representation of relevant cognitive domains, robustness across individual years before diagnosis, and occurrence of selected items within top performing combinations. Results The optimal composite cognitive test score comprised seven cognitive tests/subtests with an MSDR = 0.964. By comparison, the most sensitive individual test score was Logical Memory Delayed Recall with an MSDR = 0.64. Conclusions We have identified a composite cognitive test score representing multiple cognitive domains that has improved power compared with the most sensitive single test item to track preclinical AD decline and evaluate preclinical AD treatments. We are confirming the power of the composite in independent cohorts and with other analytical approaches, which may result in refinements, have designated it as the primary endpoint in the Alzheimer’s Prevention Initiative’s preclinical treatment trials for individuals at high imminent risk for developing symptoms due to late-onset AD.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

September 1, 2014

Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10 years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

July 1, 2013

Researchers have begun to characterize the subtle biological and cognitive processes that precede the clinical onset of Alzheimer disease (AD), and to set the stage for accelerated evaluation of experimental treatments to delay the onset, reduce the risk of, or completely prevent clinical decline. In this Review, we provide an overview of the experimental strategies, and brain imaging and cerebrospinal fluid biomarker measures that are used in early detection and tracking of AD, highlighting at-risk individuals who could be suitable for preclinical monitoring. We discuss how advances in the field have contributed to reconceptualization of AD as a sequence of biological changes that occur during progression from preclinical AD, to mild cognitive impairment and finally dementia, and we review recently proposed research criteria for preclinical AD. Advances in the study of preclinical AD have driven the recognition that efficacy of at least some AD therapies may depend on initiation of treatment before clinical manifestation of disease, leading to a new era of AD prevention research. © 2013 Macmillan Publishers Limited. All rights reserved.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

December 1, 2012

Background: Fibrillar amyloid-β (Aβ) is thought to begin accumulating in the brain many years before the onset of clinical impairment in patients with Alzheimer’s disease. By assessing the accumulation of Aβ in people at risk of genetic forms of Alzheimer’s disease, we can identify how early preclinical changes start in individuals certain to develop dementia later in life. We sought to characterise the age-related accumulation of Aβ deposition in presenilin 1 (PSEN1) E280A mutation carriers across the spectrum of preclinical disease. Methods: Between Aug 1 and Dec 6, 2011, members of the familial Alzheimer’s disease Colombian kindred aged 18-60 years were recruited from the Alzheimer’s Prevention Initiative’s registry at the University of Antioquia, Medellín, Colombia. Cross-sectional assessment using florbetapir PET was done in symptomatic mutation carriers with mild cognitive impairment or mild dementia, asymptomatic carriers, and asymptomatic non-carriers. These assessments were done at the Banner Alzheimer’s Institute in Phoenix, AZ, USA. A cortical grey matter mask consisting of six predefined regions was used to measure mean cortical florbetapir PET binding. Cortical-to-pontine standard-uptake value ratios were used to characterise the cross-sectional accumulation of fibrillar Aβ deposition in carriers and non-carriers with regression analysis and to estimate the trajectories of fibrillar Aβ deposition. Findings: We enrolled a cohort of 11 symptomatic individuals, 19 presymptomatic mutation carriers, and 20 asymptomatic non-carriers, ranging in age from 20 to 56 years. There was greater florbetapir binding in asymptomatic PSEN1 E280A mutation carriers than in age matched non-carriers. Fibrillar Aβ began to accumulate in PSEN 1E280A mutation carriers at a mean age of 28·2 years (95% CI 27·3-33·4), about 16 years and 21 years before the predicted median ages at mild cognitive impairment and dementia onset, respectively. 18F florbetapir binding rose steeply over the next 9·4 years and plateaued at a mean age of 37·6 years (95% CI 35·3-40·2), about 6 and 11 years before the expected respective median ages at mild cognitive impairment and dementia onset. Prominent florbetapir binding was seen in the anterior and posterior cingulate, precuneus, and parietotemporal and frontal grey matter, as well as in the basal ganglia. Binding in the basal ganglia was not seen earlier or more prominently than in other regions. Interpretation: These findings contribute to the understanding of preclinical familial Alzheimer’s disease and help set the stage for assessment of amyloid-modifying treatments in the prevention of familial Alzheimer’s disease. Funding: Avid Radiopharmaceuticals, Banner Alzheimer’s Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Colciencias, National Institute on Aging, and the State of Arizona. © 2012 Elsevier Ltd.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

December 1, 2012

Background: We have previously characterised functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s disease. To gain further knowledge on the preclinical phase of Alzheimer’s disease, we sought to characterise structural and functional MRI, CSF, and plasma biomarkers in a cohort of young adults carrying a high-penetrance autosomal dominant mutation that causes early-onset Alzheimer’s disease. Methods: Between January and August, 2010, 18-26-year-old presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the Colombian Alzheimer’s Prevention Initiative Registry in Medellín Antioquia, Colombia, had structural MRI, functional MRI during associative memory encoding and novel viewing and control tasks, and cognitive assessments. Consenting participants also had lumbar punctures and venepunctures. Outcome measures were task-dependent hippocampal or parahippocampal activations and precuneus or posterior cingulate deactivations, regional grey matter reductions, CSF Aβ1-42, total tau and phospho-tau181 concentrations, and plasma Aβ1-42 concentrations and Aβ1-42:Aβ1-40 ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to Alzheimer’s disease. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. Findings: 44 participants were included: 20 PSEN1 E280A mutation carriers and 24 non-carriers. The carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological test scores, or proportion of apolipoprotein E (APOE) e{open}4 carriers. Compared with non-carriers, carriers had greater right hippocampal and parahippocampal activation (p=0·001 and p<0·014, respectively, after correction for multiple comparisons), less precuneus and posterior cingulate deactivation (all p<0·010 after correction), and less grey matter in several parietal regions (all p<0·002 uncorrected and corrected p=0·009 in the right parietal search region). In the 20 participants (ten PSEN1 E280A mutation carriers and ten non-carriers) who had lumbar punctures and venepunctures, mutation carriers had higher CSF Aβ1-42 concentrations (p=0·008) and plasma Aβ1-42 concentrations (p=0·01) than non-carriers. Interpretation: Young adults at genetic risk for autosomal dominant Alzheimer's disease have functional and structural MRI findings and CSF and plasma biomarker findings consistent with Aβ1-42 overproduction. Although the extent to which the underlying brain changes are either neurodegenerative or developmental remain to be determined, this study shows the earliest known biomarker changes in cognitively normal people at genetic risk for autosomal dominant Alzheimer's disease. Funding: Banner Alzheimer's Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Boston University Department of Psychology, Colciencias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, and the State of Arizona. © 2012 Elsevier Ltd.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

August 1, 2011

Developmental dyscalculia (DD) is a specific learning disability that affects the acquisition of mathematical skills in children with normal intelligence and age-appropriate school education (prevalence 3-6%). One essential step in the development of mathematical understanding is the formation and automated access to a spatial representation of numbers. Many children with DD show a deficient development of such a mental number line. The present study aimed to develop a computer-based training program to improve the construction and access to the mental number line.Sixteen children with DD aged 8-10. years and 16 matched control children completed the 5-week computer training. All children played the game 15. min a day for 5. days a week. The efficiency of the training was evaluated by means of neuropsychological tests and functional magnetic resonance imaging (fMRI) during a number line task.In general, children with and without DD showed a benefit from the training indicated by (a) improved spatial representation of numbers and (b) the number of correctly solved arithmetical problems.Regarding group differences in brain activation, children with DD showed less activation in bilateral parietal regions, which reflects neuronal dysfunction in pivotal regions for number processing. Both groups showed reduced recruitment of relevant brain regions for number processing after the training which can be attributed to automatization of cognitive processes necessary for mathematical reasoning. Moreover, results point to a partial remediation of deficient brain activation in dyscalculics after consolidation of acquired and refined number representation.To conclude, the present study represents the first attempt to evaluate a custom-designed training program in a group of dyscalculic children and results indicate that the training leads to an improved spatial representation of the mental number line and a modulation of neural activation, which both facilitate processing of numerical tasks. © 2011 Elsevier Inc.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery