Insight
is our reward

Publications in Earth & Environmental Sciences by NOMIS researchers

NOMIS Researcher(s)

Published in

April 8, 2025

Glacier-fed streams (GFSs) are harsh environments hosting unique, highly specialized communities. Interestingly, glaciers and their GFSs are also present in Earth’s tropical regions, where environmental characteristics contrast with GFS conditions elsewhere. Yet, despite the unique and isolated nature of tropical GFSs, little is known about their inhabitants, even though they may disappear later this century with ongoing climate change. Here, we examined diatom communities from one of the last tropical African GFSs in the Rwenzori Mountains, Uganda, to characterize the composition and diversity of this unique system. Six sediment-associated biofilm samples were collected from two reaches of a stream draining the Mt. Stanley Glacier, and the resident diatom communities were studied morphologically using light and scanning electron microscopy, as well as through the sequencing of amplicons from extracted DNA (18S and rbcL). In general, morphological results agree well with barcoding results, but each individually provides irreplaceable insights. In total, we identify 24 morphotypes utilizing light microscopy, 101 diatom Amplicon Sequence Variants (ASVs) using 18S sequences, and 65 ASVs with rbcL. Across approaches, common genera include AchnanthidiumPsammothidiumNeidiumCymbopleuraEunotia, and Pinnularia. However, only about half of the diversity could be assigned to the species level across methodologies, including several of the most common taxa, indicating a high level of uniqueness. Accordingly, one of the most common taxa encountered is described here as a new species, Neidium rwenzoriense sp. nov. Our results emphasize the Rwenzori Mountains as a global hotspot for endemism, and the novelty of disappearing tropical GFSs as diatom habitats.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

March 24, 2025

As glaciers begin to disappear, technological fixes to slow or halt ice melt are emerging. But regulations are urgently required before these fixes are used widely.

Research field(s)
Conservation Biology, Environmental Sciences

NOMIS Researcher(s)

Published in

February 1, 2025

The shrinkage of glaciers and the vanishing of glacier-fed streams (GFSs) are emblematic of climate change. However, forecasts of how GFS microbiome structure and function will change under projected climate change scenarios are lacking. Combining 2,333 prokaryotic metagenome-assembled genomes with climatic, glaciological, and environmental data collected by the Vanishing Glaciers project from 164 GFSs draining Earth’s major mountain ranges, we here predict the future of the GFS microbiome until the end of the century under various climate change scenarios. Our model framework is rooted in a space-for-time substitution design and leverages statistical learning approaches. We predict that declining environmental selection promotes primary production in GFSs, stimulating both bacterial biomass and biodiversity. Concomitantly, predictions suggest that the phylogenetic structure of the GFS microbiome will change and entire bacterial clades are at risk. Furthermore, genomic projections reveal that microbiome functions will shift, with intensified solar energy acquisition pathways, heterotrophy and algal-bacterial interactions. Altogether, we project a ‘greener’ future of the world’s GFSs accompanied by a loss of clades that have adapted to environmental harshness, with consequences for ecosystem functioning.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

January 9, 2025

The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear. Variables that were directly impacted by the physical process of timber extraction, such as soil structure, were sensitive to even moderate amounts of logging, whereas measures of biodiversity and ecosystem functioning were generally resilient to logging but more affected by conversion to oil palm plantation.

Research field(s)
Conservation Biology, Forestry, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

September 16, 2024

The myriad interactions among individual plants, animals, microbes and their abiotic environment generate emergent phenomena that will determine the future of life on Earth. Here, we argue that holistic ecosystem models – incorporating key biological domains and feedbacks between biotic and abiotic processes and capable of predicting emergent phenomena – are required if we are to understand the functioning of complex, terrestrial ecosystems in a rapidly changing planet. We argue that holistic ecosystem models will provide a framework for integrating the many approaches used to study ecosystems, including biodiversity science, population and community ecology, soil science, biogeochemistry, hydrology and climate science. Holistic models will provide new insights into the nature and importance of feedbacks that cut across scales of space and time, and that connect ecosystem domains such as microbes with animals or above with below ground. They will allow us to critically examine the origins and maintenance of ecosystem stability, resilience and sustainability through the lens of systems theory, and provide a much-needed boost for conservation and the management of natural environments. We outline our approach to developing a holistic ecosystem model – the Virtual Ecosystem – and argue that while the construction of such complex models is obviously ambitious, it is both feasible and necessary.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

August 8, 2024

New digital and sensor technology provides a huge opportunity to revolutionise conservation, but we lack a plan for deploying the technologies effectively. I argue that environmental research should be concentrated at a small number of ‘super-sites’ and that the concentrated knowledge from super-sites should be used to develop holistic ecosystem models. These, in turn, should be morphed into digital twin ecosystems by live connecting them with automated environmental monitoring programmes. Data-driven simulations can then help select pathways to achieve locally determined conservation goals, and digital twins could revise and adapt those decisions in real-time. This technology-heavy vision for ‘smart conservation’ provides a map toward a future defined by more flexible, more responsive, and more efficient management of natural environments.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

July 17, 2024

Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.

Research field(s)
Conservation Biology, Forestry, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

March 1, 2024

Most cryospheric ecosystems are energy limited. How their energetics will respond to climate change remains largely unknown. This is particularly true for glacier-fed streams, which interface with the cryosphere and initiate some of Earth’s largest river systems. Here, by studying resource stoichiometry and microbial energetics in 154 glacier-fed streams sampled by the Vanishing Glaciers project across Earth’s major mountain ranges, we show that these ecosystems and their benthic microbiome are overall carbon and phosphorus limited. Threshold elemental ratios and low carbon use efficiencies (median: 0.15) modelled from extracellular enzymatic activities corroborate resource limitation in agreement with maintenance metabolism of benthic microorganisms. Space-for-time substitution analyses suggest that glacier shrinkage will stimulate benthic primary production in glacier-fed streams, thereby relieving microbial metabolism from carbon limitation. Concomitantly, we find that increasing streamwater temperature will probably stimulate microbial growth (temperature sensitivity: 0.62 eV). Consequently, elevated microbial demands for phosphorus, but diminishing inputs from subglacial sources, may intensify phosphorus limitation as glaciers shrink. Our study thus unveils a ‘green transition’ towards autotrophy in the world’s glacier-fed streams, entailing shifts in the energetics of their microorganisms.

Research field(s)
Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

February 19, 2024

Earth’s surface is deficient in available forms of many elements considered limiting for prebiotic chemistry. In contrast, many extraterrestrial rocky objects are rich in these same elements. Limiting prebiotic ingredients may, therefore, have been delivered by exogenous material; however, the mechanisms by which exogeneous material may be reliably and non-destructively supplied to a planetary surface remains unclear. Today, the flux of extraterrestrial matter to Earth is dominated by fine-grained cosmic dust. Although this material is rarely discussed in a prebiotic context due to its delivery over a large surface area, concentrated cosmic dust deposits are known to form on Earth today due to the action of sedimentary processes. Here we combine empirical constraints on dust sedimentation with dynamical simulations of dust formation and planetary accretion to show that localized sedimentary deposits of cosmic dust could have accumulated in arid environments on early Earth, in particular glacial settings that today produce cryoconite sediments. Our results challenge the widely held assumption that cosmic dust is incapable of fertilizing prebiotic chemistry. Cosmic dust deposits may have plausibly formed on early Earth and acted to fertilize prebiotic chemistry.

Research field(s)
Earth & Environmental Sciences, Physics & Astronomy

NOMIS Researcher(s)

November 16, 2023

Biological conservation practices and approaches take many forms. Conservation projects do not only differ in their aims and methods, but also concerning their conceptual and normative background assumptions and their underlying motivations and objectives. We draw on philosophical distinctions from the ethics of conservation to explain variances of different positions on conservation projects along six dimensions: (1) conservation ideals, (2) intervention intuitions, (3) the moral considerability of nonhuman beings, (4) environmental values, (5) views on nature and (6) human roles in nature. The result is a map of the moral landscape of biological conservation, on which these six dimensions are layered. This map functions as a heuristic tool to understand conceptual and normative foundations of specific conservation projects, which we will illustrate with four paradigmatic examples: the Pisavaara Strict Nature Reserve, Predator Free New Zealand, the Oostvaardersplassen Nature Reserve and the Great Green Wall Project. With this map as a heuristic tool, we aim to conceptually illuminate disagreement and clarify misunderstandings between representatives of different environmental protection strategies and to show that the same project can be supported (or criticised) on different grounds.

Research field(s)
Biology, Environmental Sciences

NOMIS Researcher(s)

The biogeochemistry of rapidly retreating Andean glaciers is poorly understood, and Ecuadorian glacier dissolved organic matter (DOM) composition is unknown. This study examined molecular composition and carbon isotopes of DOM from supraglacial and outflow streams (n = 5 and 14, respectively) across five ice capped volcanoes in Ecuador. Compositional metrics were paired with streamwater isotope analyses (δ18O) to assess if outflow DOM composition was associated with regional precipitation gradients and thus an atmospheric origin of glacier DOM. Ecuadorian glacier outflows exported ancient, biolabile dissolved organic carbon (DOC), and DOM contained a high relative abundance (RA) of aliphatic and peptide-like compounds (≥27%RA). Outflows were consistently more depleted in Δ14C-DOC (i.e., older) compared to supraglacial streams (mean −195.2 and −61.3‰ respectively), perhaps due to integration of spatially heterogenous and variably aged DOM pools across the supraglacial environment, or incorporation of aged subglacial OM as runoff was routed to the outflow. Across Ecuador, Δ14C-DOC enrichment was associated with decreased aromaticity of DOM, due to increased contributions of organic matter (OM) from microbial processes or atmospheric deposition of recently fixed and subsequently degraded OM (e.g., biomass burning byproducts). There was a regional gradient between glacier outflow DOM composition and streamwater δ18O, suggesting covariation between regional precipitation gradients and the DOM exported from glacier outflows. Ultimately, this highlights that atmospheric deposition may exert a control on glacier outflow DOM composition, suggesting regional air circulation patterns and precipitation sources in part determine the origins and quality of OM exported from glacier environments. © 2023. American Geophysical Union. All Rights Reserved.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Meteorology & Atmospheric Sciences

NOMIS Researcher(s)

Published in

January 18, 2023

River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may alter the timing and spatial distribution of riverine carbon sequestration and greenhouse gas emissions. Here we review the state of river ecosystem metabolism research and synthesize the current best available estimates of river ecosystem metabolism. We quantify the organic and inorganic carbon flux from land to global rivers and show that their net ecosystem production and carbon dioxide emissions shift the organic to inorganic carbon balance en route from land to the coastal ocean. Furthermore, we discuss how global change may affect river ecosystem metabolism and related carbon fluxes and identify research directions that can help to develop better predictions of the effects of global change on riverine ecosystem processes. We argue that a global river observing system will play a key role in understanding river networks and their future evolution in the context of the global carbon budget. © 2023, Springer Nature Limited.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Meteorology & Atmospheric Sciences

NOMIS Researcher(s)

Published in

December 1, 2022

The concept of natural otherness can be found throughout the environmental ethics literature. Drawing on this concept, this article pursues two aims. For one, it argues for an account of individual natural otherness as stable difference as opposed to accounts of natural otherness that put more emphasis on inde-pendence for the purpose of differentiating individual natural otherness from the concept of wildness. Secondly, this account of natural otherness is engaged to argue for a particular way of theorising the moral standing of individual nonhuman entities. While individual natural otherness in itself does not pro-vide an account of whether an entity matters morally in itself (that is, whether it is morally considerable); it points to an account of incommensurable moral significance for all entities which are attributed moral considerability. That is an often-overlooked alternative to egalitarian or hierarchical accounts of moral significance. Individual natural otherness understood in this way in turn pro-vides another explanatory story for why relational accounts of environmental ethics that strongly emphasise the importance of concepts such as wildness are particularly salient.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

Published in

December 1, 2022

In this paper we suggest an interpretation of the concept of ‘relational value’ that could be useful in both environmental ethics and empirical analyses. We argue that relational valuing includes aspects of intrinsic and instrumental valuing. If relational values are attributed, objects are appreciated because the relationship with them contributes to the human flourishing component of well-being (instrumental aspect). At the same time, attributing relational value involves genuine esteem for the valued item (intrinsic aspect). We also introduce the notions of mediating and indirect relational environmental values, attributed in relationships involving people as well as environmental objects. We close by proposing how our analysis can be used in empirical research.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

February 1, 2022

The article presents evidence about the Middle Palaeolithic and Middle to Upper Palaeolithic transition interval in the karst area of the Danube Gorges in the Lower Danube Basin. We review the extant data and present new evidence from two recently investigated sites found on the Serbian side of the Danube River – Tabula Traiana and Dubočka-Kozja caves. The two sites have yielded layers dating to both the Middle and Upper Palaeolithic and have been investigated by the application of modern standards of excavation and recovery along with a suite of state-of-the-art analytical procedures. The presentation focuses on micromorphological analyses of the caves’ sediments, characterisation of cryptotephra, a suite of new radiometric dates (accelerator mass spectrometry and optically stimulated luminescence) as well as proteomics (zooarchaeology by mass spectrometry) and stable isotope data in discerning patterns of human occupation of these locales over the long term.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Paleontology

NOMIS Researcher(s)

December 1, 2020

Reliable quantitative information on the North Korean economy is extremely scarce. In particular, reliable income per capita and poverty figures for the country are not available. In this contribution, we provide for the first time estimates of absolute poverty rates in North Korean subnational regions based on the combination of innovative remote-sensed night-time light intensity data (monthly information for built areas) with estimated income distributions. Our results, which are robust to the use of different methods to approximate the income distribution in the country, indicate that the share of persons living in extreme poverty in North Korea may be larger than previously thought. We estimate a poverty rate for the country of around 60% in 2018 and a high volatility in the dynamics of income at the national level in North Korea for the period 2012–2018. Income per capita estimates tend to decline significantly from 2012 to 2015 and present a recovery since 2016. The subnational estimates of income and poverty reveal a change in relative dynamics since the second half of the 2012–2018 period. The first part of the period is dominated by divergent dynamics in income across regions, while the second half reveals convergence in regional income.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

July 1, 2020

Illegal activity, such as deforestation for illicit crops for cocaine production, has been inferred as a cause of land change. Nonetheless, illicit activity is often overlooked or difficult to incorporate into causal inference models of land change. Evidence continues to build that narcotrafficking plays an important, yet often unreported, role in forest loss. This study presents a novel strategy to meet the challenge of estimating the causal effect of illicit activity in land change using consolidated news media reports to estimate the relationship between drug trafficking and accelerated forest loss in Central America. Drug trafficking organizations engage in illegal land transactions, money laundering, and territorial control that can manifest as forest conversion to agriculture or pasture land uses. Longitudinal data on 50 sub-national units over a period of 16 years (2001-2016) are used in fixed effects regressions to estimate the role of narcotrafficking in forest loss. Two narcotrafficking activity proxies were developed as explanatory variables of forest loss: i) an “official” proxy from drug seizures data within 14 sub-national units; and, ii) an “unofficial” proxy developed from georeferenced news media accounts of narcotrafficking events. The effect of narcotrafficking was systematically compared to the other well-known causes of forest loss, such as rural population growth and other conventional drivers. Both proxies indicate narcotrafficking is a statistically significant (p<0.01) contributor to forest loss in the region, particularly in Nicaragua (p<0.05, official proxy), Honduras (p<0.05, media proxy), and Guatemala (p<0.05, media proxy). Narcotrafficking variables explain an additional 5% (media proxy) and 9% (official proxy) of variance of forest loss not captured by conventional models. This study showed the ability of news media data to capture the signal of illicit activity in land use changes such as forest loss. The methods employed here could be used to estimate the causal effect of illicit activities in other land and environmental systems. Our results suggest that current drug policy, which concentrates drug trafficking in remote areas of very high cultural and environmental value, has helped to accelerate the loss of Central America's remaining forests.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

July 1, 2020

This research is motivated by the compelling finding that the illicit cocaine trade is responsible for extensive patterns of deforestation in Central America. This pattern is most pronounced in the region’s large protected areas. We wanted to know how cocaine trafficking affects conservation governance in Central America’s protected areas, and whether deforestation is a result of impacts on governance. To answer this question, we interviewed conservation stakeholders from key institutions at various levels in three drug-trafficking hotspots: Peten, Guatemala, Northeastern Honduras, and the Osa Peninsula in Costa Rica. We found that, in order to establish and maintain drug transit operations, drug-trafficking organizations compete with and undermine conservation governance actors and institutions. Drug trafficking impacts conservation governance in three ways: 1) it undermines long standing conservation coalitions; 2) it fuels booms in extractive activities inside protected lands; and 3) it erodes the territorial control that conservation institutions exert, exploiting strict “fortress” conservation governance models. Participatory governance models that provide locals with strong expectations of land tenure and/or institutional support for local decision-making may offer resistance to the impacts on governance institutions that we documented.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

Published in

January 1, 2020

null

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Meteorology & Atmospheric Sciences

NOMIS Researcher(s)

January 1, 2020

The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

Published in

December 1, 2019

Participatory modeling is a potentially high-impact approach for catalyzing fundamental sustainability transformations. We test if participation in a group system dynamics modeling exercise increases participants’ agency through a novel method to evaluate potential behavioral change using expectation measures. A water-energy-food nexus—a functionally interdependent but underconceptualized system with low consensus and high scientific uncertainty—was mapped, and its evolution simulated by 46 participants in three interventions in a region undergoing hydropower infrastructure development in Northeastern Cambodia. Participants’ system-related expectations were measured before and after the interventions. Our results suggest that participants became significantly more optimistic about their individual agency to increase agricultural and fishing income and, interestingly, less likely to participate in local government development planning procedures. Findings also reveal how some uncertainties for multiple variables were reduced within and across the groups. Such converging expectations suggest that participatory modeling could contribute to making collective solutions and institutionalized agreements more likely. This research contributes to innovation in sustainability because it unpacks some underlying mechanics of how participatory processes can lead to new adaptive capacities, shared perspectives, and collective actions.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Meteorology & Atmospheric Sciences