Insight
is our reward

Publications in Sepsis by NOMIS researchers

NOMIS Researcher(s)

Published in

September 1, 2024
The digitisation of health care is offering the promise of transforming the management of paediatric sepsis, which is a major source of morbidity and mortality in children worldwide. Digital technology is already making an impact in paediatric sepsis, but is almost exclusively benefiting patients in high-resource health-care settings. However, digital tools can be highly scalable and cost-effective, and—with the right planning—have the potential to reduce global health disparities. Novel digital solutions, from wearable devices and mobile apps, to electronic health record-embedded decision support tools, have an unprecedented opportunity to transform paediatric sepsis research and care. In this Series paper, we describe the current state of digital solutions in paediatric sepsis around the world, the advances in digital technology that are enabling the development of novel applications, and the potential effect of advances in artificial intelligence in paediatric sepsis research and clinical care.

Research field(s)
Pediatrics

NOMIS Researcher(s)

Published in

September 1, 2024

Sepsis is a major contributor to poor child health outcomes around the world. The high morbidity, mortality, and societal cost associated with paediatric sepsis render it a global health priority, as summarised in Paper 1 of this Series. Sepsis is characterised by a dysregulated host response to infection that manifests as organ failure, and children are uniquely susceptible to sepsis, as discussed in Paper 2. The focus of this third Series paper is quality improvement in paediatric sepsis. The 2017 WHO resolution on sepsis outlined key aims to reduce the burden of sepsis. As of 2024, only a small number of countries have implemented systematic, paediatric-focused quality improvement programmes to raise sepsis awareness, enhance recognition of sepsis, promote timely treatment, and provide long-term support for paediatric sepsis survivors. We examine programme successes and systematic barriers to quality improvement targeting paediatric sepsis. We highlight the need for programme design to consider the entire patient journey, starting with prevention, caregiver awareness, recognition at home, education of the health-care workforce, development of health-care systems, and establishment of long-term family and survivor support extending beyond the intensive care unit. Building on lessons learnt from existing quality improvement programmes, we outline implementation strategies and measures to enable benchmarking. Ultimately, quality improvement on a global scale can only be accelerated through a global learning platform focusing on paediatric sepsis.

This is the third in a Series of four papers on paediatric sepsis (Paper 4 appears in The Lancet Digital Health). All papers in the Series are available at thelancet.com/series/paediatric-sepsis

Research field(s)
Pediatrics

NOMIS Researcher(s)

Published in

September 1, 2024

Sepsis disproportionally affects children across all health-care settings and is one of the leading causes of morbidity and mortality in neonatal and paediatric age groups. As shown in the first paper in this Series, the age-specific incidence of sepsis is highest during the first years of life, before approaching adult incidence rates during adolescence. In the second paper in this Series, we focus on the unique susceptibility of paediatric patients to sepsis and how the underlying dysregulated host response relates to developmental aspects of children’s immune system, genetic, perinatal, and environmental factors, and comorbidities and socioeconomic determinants of health, which often differ between children and adults. State-of-the-art clinical management of paediatric sepsis is organised around three treatment pillars—diagnosis, early resuscitation, and titration of advanced care—and we examine available treatment guidelines and the limitations of their supporting evidence. Serious evidence gaps remain in key areas of paediatric sepsis care, especially surrounding recognition, common interventions, and survivor support, and to this end we offer a research roadmap for the next decade that could accelerate targeted diagnostics and personalised use of immunomodulation. However, improving outcomes for children with sepsis relies fundamentally on systematic quality improvement in both recognition and treatment, which is the theme of the third paper in this Series. Digital health, as shown in the fourth and final paper of this Series, holds promising potential in breaking down the barriers that hinder progress in paediatric sepsis care and, ultimately, global child health.

This is the second in a Series of four papers on paediatric sepsis (Paper 4 appears in The Lancet Digital Health). All papers in the Series are available at thelancet.com/series/paediatric-sepsis

Research field(s)
Pediatrics

NOMIS Researcher(s)

Published in

September 1, 2024

Sepsis is a dysregulated host response to infection that leads to life-threatening organ dysfunction. Half of the 50 million people affected by sepsis globally every year are neonates and children younger than 19 years. This burden on the paediatric population translates into a disproportionate impact on global child health in terms of years of life lost, morbidity, and lost opportunities for children to reach their developmental potential. This Series on paediatric sepsis presents the current state of diagnosis and treatment of sepsis in children, and maps the challenges in alleviating the burden on children, their families, and society. Drawing on diverse experience and multidisciplinary expertise, we offer a roadmap to improving outcomes for children with sepsis. This first paper of the Series is a narrative review of the burden of paediatric sepsis from low-income to high-income settings. Advances towards improved operationalisation of paediatric sepsis across all age groups have facilitated more standardised assessment of the Global Burden of Disease estimates of the impact of sepsis on child health, and these estimates are expected to gain further precision with the roll out of the new Phoenix criteria for sepsis. Sepsis remains one of the leading causes of childhood morbidity and mortality, with immense direct and indirect societal costs. Although substantial regional differences persist in relation to incidence, microbiological epidemiology, and outcomes, these cannot be explained by differences in income level alone. Recent insights into post-discharge sequelae after paediatric sepsis, ranging from late mortality and persistent neurodevelopmental impairment to reduced health-related quality of life, show how common post-sepsis syndrome is in children. Targeting sepsis as a key contributor to poor health outcomes in children is therefore an essential component of efforts to meet the Sustainable Development Goals.

This is the first in a Series of four papers on paediatric sepsis (Paper 4 appears in The Lancet Digital Health). All papers in the Series are available at thelancet.com/series/paediatric-sepsis

Research field(s)
Pediatrics

NOMIS Researcher(s)

January 21, 2024

Importance  Sepsis is a leading cause of death among children worldwide. Current pediatric-specific criteria for sepsis were published in 2005 based on expert opinion. In 2016, the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) defined sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection, but it excluded children.

Objective  To update and evaluate criteria for sepsis and septic shock in children.

Evidence Review  The Society of Critical Care Medicine (SCCM) convened a task force of 35 pediatric experts in critical care, emergency medicine, infectious diseases, general pediatrics, nursing, public health, and neonatology from 6 continents. Using evidence from an international survey, systematic review and meta-analysis, and a new organ dysfunction score developed based on more than 3 million electronic health record encounters from 10 sites on 4 continents, a modified Delphi consensus process was employed to develop criteria.

Findings  Based on survey data, most pediatric clinicians used sepsis to refer to infection with life-threatening organ dysfunction, which differed from prior pediatric sepsis criteria that used systemic inflammatory response syndrome (SIRS) criteria, which have poor predictive properties, and included the redundant term, severe sepsis. The SCCM task force recommends that sepsis in children be identified by a Phoenix Sepsis Score of at least 2 points in children with suspected infection, which indicates potentially life-threatening dysfunction of the respiratory, cardiovascular, coagulation, and/or neurological systems. Children with a Phoenix Sepsis Score of at least 2 points had in-hospital mortality of 7.1% in higher-resource settings and 28.5% in lower-resource settings, more than 8 times that of children with suspected infection not meeting these criteria. Mortality was higher in children who had organ dysfunction in at least 1 of 4—respiratory, cardiovascular, coagulation, and/or neurological—organ systems that was not the primary site of infection. Septic shock was defined as children with sepsis who had cardiovascular dysfunction, indicated by at least 1 cardiovascular point in the Phoenix Sepsis Score, which included severe hypotension for age, blood lactate exceeding 5 mmol/L, or need for vasoactive medication. Children with septic shock had an in-hospital mortality rate of 10.8% and 33.5% in higher- and lower-resource settings, respectively.

Conclusions and Relevance  The Phoenix sepsis criteria for sepsis and septic shock in children were derived and validated by the international SCCM Pediatric Sepsis Definition Task Force using a large international database and survey, systematic review and meta-analysis, and modified Delphi consensus approach. A Phoenix Sepsis Score of at least 2 identified potentially life-threatening organ dysfunction in children younger than 18 years with infection, and its use has the potential to improve clinical care, epidemiological assessment, and research in pediatric sepsis and septic shock around the world.

Research field(s)
Emergency & Critical Care Medicine, Pediatrics

NOMIS Researcher(s)

January 21, 2024

Importance  The Society of Critical Care Medicine Pediatric Sepsis Definition Task Force sought to develop and validate new clinical criteria for pediatric sepsis and septic shock using measures of organ dysfunction through a data-driven approach.

Objective  To derive and validate novel criteria for pediatric sepsis and septic shock across differently resourced settings.

Design, Setting, and Participants  Multicenter, international, retrospective cohort study in 10 health systems in the US, Colombia, Bangladesh, China, and Kenya, 3 of which were used as external validation sites. Data were collected from emergency and inpatient encounters for children (aged <18 years) from 2010 to 2019: 3 049 699 in the development (including derivation and internal validation) set and 581 317 in the external validation set.

Exposure  Stacked regression models to predict mortality in children with suspected infection were derived and validated using the best-performing organ dysfunction subscores from 8 existing scores. The final model was then translated into an integer-based score used to establish binary criteria for sepsis and septic shock.

Main Outcomes and Measures  The primary outcome for all analyses was in-hospital mortality. Model- and integer-based score performance measures included the area under the precision recall curve (AUPRC; primary) and area under the receiver operating characteristic curve (AUROC; secondary). For binary criteria, primary performance measures were positive predictive value and sensitivity.

Results  Among the 172 984 children with suspected infection in the first 24 hours (development set; 1.2% mortality), a 4-organ-system model performed best. The integer version of that model, the Phoenix Sepsis Score, had AUPRCs of 0.23 to 0.38 (95% CI range, 0.20-0.39) and AUROCs of 0.71 to 0.92 (95% CI range, 0.70-0.92) to predict mortality in the validation sets. Using a Phoenix Sepsis Score of 2 points or higher in children with suspected infection as criteria for sepsis and sepsis plus 1 or more cardiovascular point as criteria for septic shock resulted in a higher positive predictive value and higher or similar sensitivity compared with the 2005 International Pediatric Sepsis Consensus Conference (IPSCC) criteria across differently resourced settings.

Conclusions and Relevance  The novel Phoenix sepsis criteria, which were derived and validated using data from higher- and lower-resource settings, had improved performance for the diagnosis of pediatric sepsis and septic shock compared with the existing IPSCC criteria.

Research field(s)
Emergency & Critical Care Medicine, Pediatrics

NOMIS Researcher(s)

Published in

October 5, 2023

Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p < 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development. © 2023 The Authors

Research field(s)
Health Sciences

Increased plasma mitochondrial DNA concentrations are associated with poor outcomes in multiple critical illnesses, including COVID19. However, current methods of cell-free mitochondrial DNA quantification in plasma are time-consuming and lack reproducibility. Here, we used next-generation sequencing to characterize the size and genome location of circulating mitochondrial DNA in critically ill subjects with COVID-19 to develop a facile and optimal method of quantification by droplet digital PCR. Sequencing revealed a large percentage of small mitochondrial DNA fragments in plasma with wide variability in coverage by genome location. We identified probes for the mitochondrial DNA genes, cytochrome B and NADH dehydrogenase 1, in regions of relatively high coverage that target small sequences potentially missed by other methods. Serial assessments of absolute mitochondrial DNA concentrations were then determined in plasma from 20 critically ill subjects with COVID-19 without a DNA isolation step. Mitochondrial DNA concentrations on the day of enrollment were increased significantly in patients with moderate or severe acute respiratory distress syndrome (ARDS) compared with those with no or mild ARDS. Comparisons of mitochondrial DNA concentrations over time between patients with no/mild ARDS who survived, patients with moderate/severe ARDS who survived, and nonsurvivors showed the highest concentrations in patients with more severe disease. Absolute mitochondrial DNA quantification by droplet digital PCR is time-efficient and reproducible; thus, we provide a valuable tool and rationale for future studies evaluating mitochondrial DNA as a real-time biomarker to guide clinical decision-making in critically ill subjects with COVID-19.

Research field(s)
Health Sciences, Clinical Medicine, Respiratory System