Insight
is our reward

Publications in Microbiome by NOMIS researchers

NOMIS Researcher(s)

Published in

January 2, 2025

Glacier-fed streams (GFS) feature among Earth’s most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms. A total of 2,855 bacterial MAGs were characterized by diverse strategies to exploit inorganic and organic energy sources, in part via functional redundancy and mixotrophy. We show that biofilms probably become more complex and switch from chemoautotrophy to heterotrophy as algal biomass increases in GFS owing to glacier shrinkage. Our MAG compendium sheds light on the success of microbial life in GFS and provides a resource for future research on a microbiome potentially impacted by climate change.

Research field(s)
Biology, Evolutionary Biology

NOMIS Researcher(s)

Published in

January 1, 2025

The rapid melting of mountain glaciers and the vanishing of their streams is emblematic of climate change1,2. Glacier-fed streams (GFSs) are cold, oligotrophic and unstable ecosystems in which life is dominated by microbial biofilms2,3. However, current knowledge on the GFS microbiome is scarce4,5, precluding an understanding of its response to glacier shrinkage. Here, by leveraging metabarcoding and metagenomics, we provide a comprehensive survey of bacteria in the benthic microbiome across 152 GFSs draining the Earth’s major mountain ranges. We find that the GFS bacterial microbiome is taxonomically and functionally distinct from other cryospheric microbiomes. GFS bacteria are diverse, with more than half being specific to a given mountain range, some unique to single GFSs and a few cosmopolitan and abundant. We show how geographic isolation and environmental selection shape their biogeography, which is characterized by distinct compositional patterns between mountain ranges and hemispheres. Phylogenetic analyses furthermore uncovered microdiverse clades resulting from environmental selection, probably promoting functional resilience and contributing to GFS bacterial biodiversity and biogeography. Climate-induced glacier shrinkage puts this unique microbiome at risk. Our study provides a global reference for future climate-change microbiology studies on the vanishing GFS ecosystem.

Research field(s)
Biology, Evolutionary Biology