Insight
is our reward

Publications in Frontotemporal Dementia with Motor Neuron Disease by NOMIS researchers

NOMIS Researcher(s)

Published in

August 1, 2017

Translation of the expanded (ggggcc)n repeat in C9orf72 patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) causes abundant poly-GA inclusions. To elucidate their role in pathogenesis, we generated transgenic mice expressing codon-modified (GA)149 conjugated with cyan fluorescent protein (CFP). Transgenic mice progressively developed poly-GA inclusions predominantly in motoneurons and interneurons of the spinal cord and brain stem and in deep cerebellar nuclei. Poly-GA co-aggregated with p62, Rad23b and the newly identified Mlf2, in both mouse and patient samples. Consistent with the expression pattern, 4-month-old transgenic mice showed abnormal gait and progressive balance impairment, but showed normal hippocampus-dependent learning and memory. Apart from microglia activation we detected phosphorylated TDP-43 but no neuronal loss. Thus, poly-GA triggers behavioral deficits through inflammation and protein sequestration that likely contribute to the prodromal symptoms and disease progression of C9orf72 patients.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

July 1, 2017

The C9orf72 GGGGCC repeat expansion is a major cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). Non-conventional repeat translation results in five dipeptide repeat proteins (DPRs), but their clinical utility, overall significance, and temporal course in the pathogenesis of c9ALS/FTD are unclear, although animal models support a gain-of-function mechanism. Here, we established a poly-GP immunoassay from cerebrospinal fluid (CSF) to identify and characterize C9orf72 patients. Significant poly-GP levels were already detectable in asymptomatic C9orf72 mutation carriers compared to healthy controls and patients with other neurodegenerative diseases. The poly-GP levels in asymptomatic carriers were similar to symptomatic c9ALS/FTD cases. Poly-GP levels were not correlated with disease onset, clinical scores, and CSF levels of neurofilaments as a marker for axonal damage. Poly-GP determination in CSF revealed a C9orf72 mutation carrier in our cohort and may thus be used as a diagnostic marker in addition to genetic testing to screen patients. Presymptomatic expression of poly-GP and likely other DPR species may contribute to disease onset and thus represents an alluring therapeutic target.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

May 1, 2017

Cell-to-cell transmission of protein aggregates is an emerging theme in neurodegenerative disease. Here, we analyze the dipeptide repeat (DPR) proteins that form neuronal inclusions in patients with hexanucleotide repeat expansion C9orf72, the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Sense and antisense transcripts of the (G4C2)n repeat are translated by repeat-associated non-ATG (RAN) translation in all reading frames into five aggregating DPR proteins. We show that the hydrophobic DPR proteins poly-GA, poly-GP, and poly-PA are transmitted between cells using co-culture assays and cell extracts. Moreover, uptake or expression of poly-GA induces nuclear RNA foci in (G4C2)80-expressing cells and patient fibroblasts, suggesting an unexpected positive feedback loop. Exposure to recombinant poly-GA and cerebellar extracts of C9orf72 patients increases repeat RNA levels and seeds aggregation of all DPR proteins in receiver cells expressing (G4C2)80. Treatment with anti-GA antibodies inhibits intracellular poly-GA aggregation and blocks the seeding activity of C9orf72 brain extracts. Poly-GA-directed immunotherapy may thus reduce DPR aggregation and disease progression in C9orf72 ALS/FTD.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

April 21, 2017

Frontotemporal Lobar Degeneration (FTLD) encompasses certain related neurodegenerative disorders which alter behaviour, personality and language. Heterogeneous ribonuclear proteins (hnRNPs) maintain RNA metabolism and changes in their function may underpin the pathogenesis of FTLD. Immunostaining for hnRNP A1, A2/B1 and A3 was performed on sections of temporal cortex with hippocampus from 61 patients with FTLD, stratified by pathological hallmarks into FTLD-tau and FTLD-TDP type A, B and C subtypes, and by genetics into patients with C9orf72 expansions, MAPT or GRN mutations, or those without known mutation. Four patients with Motor Neurone Disease (MND) with C9orf72 expansions and 10 healthy controls were also studied. Semi-quantitative analysis assessed hnRNP staining intensity in dentate gyrus (DG) and CA4 region of hippocampus, and temporal cortex (Tcx) in the different pathological and genetic groups.Immunostaining for hnRNP A1, A2/B1 and A3 revealed no consistent changes in pattern or amount of physiological staining across any of the pathological or genetic groups. No immunostaining of any inclusions resembling TDP-43 immunoreactive neuronal cytoplasmic inclusions or dystrophic neurites, was seen in either Tcx or DG of the hippocampus in any of the FTLD cases investigated for hnRNP A1, A2/B1 and A3. However, immunostaining for hnRNP A3 showed that inclusion bodies, resembling those TDP-43 negative, p62-immunopositive structures containing dipeptide repeat proteins (DPR) were variably observed in hippocampus and cerebellum. The proportion of cases showing hnRNP A3-immunoreactive DPR, and the number of hnRNP A3-positive inclusions within cases, was significantly greater in DG than in cells of CA4 region and cerebellum, but the latter was significantly less in all three regions compared to that detected by p62 immunostaining.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

September 1, 2016

Intronic hexanucleotide (G4C2) repeat expansions in C9orf72 are genetically associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat RNA accumulates within RNA foci but is also translated into disease characterizing dipeptide repeat proteins (DPR). Repeat-dependent toxicity may affect nuclear import. hnRNPA3 is a heterogeneous nuclear ribonucleoprotein, which specifically binds to the G4C2 repeat RNA. We now report that a reduction of nuclear hnRNPA3 leads to an increase of the repeat RNA as well as DPR production and deposition in primary neurons and a novel tissue culture model that reproduces features of the C9orf72 pathology. In fibroblasts derived from patients carrying extended C9orf72 repeats, nuclear RNA foci accumulated upon reduction of hnRNPA3. Neurons in the hippocampus of C9orf72 patients are frequently devoid of hnRNPA3. Reduced nuclear hnRNPA3 in the hippocampus of patients with extended C9orf72 repeats correlates with increased DPR deposition. Thus, reduced hnRNPA3 expression in C9orf72 cases leads to increased levels of the repeat RNA as well as enhanced production and deposition of DPR proteins and RNA foci.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

July 15, 2016

Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

November 2, 2012

Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased β2-transferrin levels in patient CSF. Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology