Insight
is our reward

Publications in Brain development by NOMIS researchers

NOMIS Researcher(s)

Published in

January 30, 2025

Human accelerated regions (HARs) have been implicated in human brain evolution. However, insight into the genes and pathways they control is lacking, hindering the understanding of their function. Here, we identify 2,963 conserved gene targets for 1,590 HARs and their orthologs in human and chimpanzee neural stem cells (NSCs). Conserved gene targets are enriched for neurodevelopmental functions and are overrepresented among differentially expressed genes (DEGs) identified in human NSCs (hNSCs) and chimpanzee NSCs (cNSCs) as well as in human versus non-human primate brains. Species-specific gene targets do not converge on any function and are not enriched among DEGs. HAR targets also show cell-type-specific expression in the human fetal brain, including in outer radial glia, which are linked to cortical expansion. Our findings support that HARs influence brain evolution by altering the expression of ancestral gene targets shared between human and chimpanzee rather than by gaining new targets in human and facilitate hypothesis-directed studies of HAR biology.

Research field(s)
Bioinformatics, Developmental Biology, Evolutionary Biology

NOMIS Researcher(s)

Published in

October 14, 2024

Human-specific (HS) genes have been implicated in brain evolution, but their impact on human neuron development and diseases remains unclear. Here, we study SRGAP2B/C, two HS gene duplications of the ancestral synaptic gene SRGAP2A, in human cortical pyramidal neurons (CPNs) xenotransplanted in the mouse cortex. Downregulation of SRGAP2B/C in human CPNs led to strongly accelerated synaptic development, indicating their requirement for the neoteny that distinguishes human synaptogenesis. SRGAP2B/C genes promoted neoteny by reducing the synaptic levels of SRGAP2A,thereby increasing the postsynaptic accumulation of the SYNGAP1 protein, encoded by a major intellectual disability/autism spectrum disorder (ID/ASD) gene. Combinatorial loss-of-function experiments in vivo revealed that the tempo of synaptogenesis is set by the reciprocal antagonism between SRGAP2A and SYNGAP1, which in human CPNs is tipped toward neoteny by SRGAP2B/C. Thus, HS genes can modify the phenotypic expression of genetic mutations leading to ID/ASD through the regulation of human synaptic neoteny.

Research field(s)
Genetics & Heredity

NOMIS Researcher(s)

October 1, 2024

Animal speciation often involves novel behavioral features that rely on nervous system evolution. Human-specific brain features have been proposed to underlie specialized cognitive functions and to be linked, at least in part, to the evolution of synapses, neurons, and circuits of the cerebral cortex. Here, we review recent results showing that, while the human cortex is composed of a repertoire of cells that appears to be largely similar to the one found in other mammals, human cortical neurons do display specialized features at many levels, from gene expression to intrinsic physiological properties. The molecular mechanisms underlying human species-specific neuronal features remain largely unknown but implicate hominid-specific gene duplicates that encode novel molecular modifiers of neuronal function. The identification of human-specific genetic modifiers of neuronal function brings novel insights on brain evolution and function and, could also provide new insights on human species-specific vulnerabilities to brain disorders.

Research field(s)
Genetics & Heredity, Evolutionary Biology

NOMIS Researcher(s)

Published in

February 27, 2024

Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the effects of genetic variation within regulatory elements on neural progenitors remain obscure. We use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 conserved regions in 2,227 enhancers active in the developing human cortex and determine effects on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental disorders and show biased expression in specific fetal human brain neural progenitor populations. Although enhancer disruptions overall have weaker effects than gene disruptions, we identify enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation phenotypes with chromatin interactions reveals regulatory relationships between enhancers and their target genes contributing to neurogenesis and potentially to human cortical evolution.

Research field(s)
Developmental Biology, Genetics & Heredity