Insight
is our reward

Publications in Anxiety by NOMIS researchers

NOMIS Researcher(s)

Adolescence is a developmental period of relative volatility, where the individual experiences significant changes to their physical and social environment. The ability to adapt to the volatility of one’s surroundings is an important cognitive ability, particularly while foraging, a near-ubiquitous behaviour across the animal kingdom. As adolescents experience more volatility in their surroundings, we predicted that this age group would be more adept than adults at using exploration to adjust to volatility. We employed a foraging task with a well-validated computational model to characterise the mechanisms of exploration in volatile environments, preregistering the hypothesis that adolescents (aged 16–17; N = 91) would exhibit more optimal adaptation of their learning rate to changes in environmental volatility compared with adults (aged 24+; N = 90). However, surprisingly, both adolescents and adults exhibited suboptimal adjustment of their learning rate to environmental volatility. In contrast to the learning rate, it was instead participants’ stochasticity (i.e., decision variability) that better resembled the adjustment to volatility made by the optimal RL agent. Although heightened stochasticity in the volatile environment led participants to more often trial different responses that facilitated discovery of changes to the environment, we also found that anxiety impaired this adaptive ability. The finding of heightened stochasticity in volatile environments contradicts expectations that the learning rate is responsible for successful adaptation and motivates future work on the deleterious role that anxiety plays when adolescents manage periods of transition.

Research field(s)
Psychology & Cognitive Sciences

NOMIS Researcher(s)

Published in

November 2, 2023

When we see new people, we rapidly form first impressions. Whereas past research has focused on the role of morphological or emotional cues, we asked whether transient visceral states bias the impressions we form. Across three studies (N = 94 university students), we investigated how fluctuations of bodily states, driven by the interoceptive impact of cardiac signals, influence the perceived trustworthiness of faces. Participants less often chose faces presented in synchrony with their own cardiac systole as more trustworthy than faces presented out of synchrony. Participants also explicitly judged faces presented in synchrony with their cardiac systole as less trustworthy. Finally, the presentation of faces in synchrony with participants’ cardiac diastole did not modulate participants’ perceptions of the faces’ trustworthiness, suggesting that the systolic phase is necessary for such interoceptive effects. These findings highlight the role of phasic interoceptive information in the processing of social information and provide a mechanistic account of the role of visceroception for social perception. © The Author(s) 2022.

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology

NOMIS Researcher(s)

December 1, 2018

Adequate mathematical competencies are currently indispensable in professional and social life. However, mathematics is often associated with stress and frustration and the confrontation with tasks that require mathematical knowledge triggers anxiety in many children. We examined if there is a relationship between math anxiety and changes in brain structure in children with and without developmental dyscalculia. Our findings showed that math anxiety is related to altered brain structure. In particular, the right amygdala volume was reduced in individuals with higher math anxiety. In conclusion, math anxiety not only hinders children in arithmetic development, but it is associated with altered brain structure in areas related to fear processing. This emphasizes the far-reaching outcome emotional factors in mathematical cognition can have and encourages educators and researchers alike to consider math anxiety to prevent detrimental long-term consequences on school achievement and quality of life, especially in children with developmental dyscalculia.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery