Insight
is our reward

Publications in Alzheimer's Disease by NOMIS researchers

INTRODUCTION: While there may be microbial contributions to Alzheimer’s disease (AD), findings have been inconclusive. We recently reported an AD-associated CD83(+)microglia subtype associated with increased immunoglobulinG4(IgG4) in the transverse colon (TC).

METHODS: We used immunohistochemistry (IHC), IgG4 repertoire profiling, and brain organoid experiments to explore this association.

RESULTS: CD83(+) microglia in the superior frontal gyrus (SFG) are associated with elevated IgG4 and human cytomegalovirus (HCMV) in the TC, anti-HCMV IgG4 in cerebrospinal fluid, and both HCMV and IgG4 in the SFG and vagal nerve. This association was replicated in an independent AD cohort. HCMV-infected cerebral organoids showed accelerated AD pathophysiological features (Aβ42 and pTau-212) and neuronal death.

DISCUSSION: Findings indicate complex, cross-tissue interactions between HCMV and the adaptive immune response associated with CD83(+)microglia in persons with AD. This may indicate an opportunity for antiviral therapy in persons with AD and biomarker evidence of HCMV, IgG4, or CD83(+)microglia.

Research field(s)
Genetics & Heredity, Neurology & Neurosurgery, Biology

NOMIS Researcher(s)

Published in

July 10, 2024

The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.

Research field(s)
Genetics & Heredity, Biology

NOMIS Researcher(s)

June 19, 2024

Variants in APOE and PSEN1 (encoding apolipoprotein E and presenilin 1, respectively) alter the risk of Alzheimer’s disease. We previously reported a delay of cognitive impairment in a person with autosomal dominant Alzheimer’s disease caused by the PSEN1E280A variant who also had two copies of the apolipoprotein E3 Christchurch variant (APOE3Ch). Heterozygosity for the APOE3Ch variant may influence the age at which the onset of cognitive impairment occurs. We assessed this hypothesis in a population in which the PSEN1E280A variant is prevalent.

Research field(s)
Health Sciences, Genetics & Heredity, Clinical Medicine

NOMIS Researcher(s)

December 1, 2022

Objective: The amyloid cascade hypothesis of Alzheimer disease (AD) has been increasingly challenged. Here, we aim to refocus the amyloid cascade hypothesis on its original premise that the accumulation of amyloid beta (Aβ) peptide is the primary and earliest event in AD pathogenesis as based on current evidence, initiating several pathological events and ultimately leading to AD dementia. Background: An ongoing debate about the validity of the amyloid cascade hypothesis for AD has been triggered by clinical trials with investigational disease-modifying drugs targeting Aβ that have not demonstrated consistent clinically meaningful benefits. Updated Hypothesis: It is an open question if monotherapy targeting Aβ pathology could be markedly beneficial at a stage when the brain has been irreversibly damaged by a cascade of pathological changes. Interventions in cognitively unimpaired individuals at risk for dementia, during amyloid-only and pre-amyloid stages, are more appropriate for proving or refuting the amyloid hypothesis. Our updated hypothesis states that anti-Aβ investigational therapies are likely to be most efficacious when initiated in the preclinical (asymptomatic) stages of AD and specifically when the disease is driven primarily by amyloid pathology. Given the young age at symptom onset and the deterministic nature of the mutations, autosomal dominant AD (ADAD) mutation carriers represent the ideal population to evaluate the efficacy of putative disease-modifying Aβ therapies. Major Challenges for the Hypothesis: Key challenges of the amyloid hypothesis include the recognition that disrupted Aβ homeostasis alone is insufficient to produce the AD pathophysiologic process, poor correlation of Aβ with cognitive impairment, and inconclusive data regarding clinical efficacy of therapies targeting Aβ. Challenges of conducting ADAD research include the rarity of the disease and uncertainty of the generalizability of ADAD findings for the far more common “sporadic” late-onset AD. Linkage to Other Major Theories: The amyloid cascade hypothesis, modified here to pertain to the preclinical stage of AD, still needs to be integrated with the development and effects of tauopathy and other co-pathologies, including neuroinflammation, vascular insults, synucleinopathy, and many others.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

November 1, 2022

Introduction: Females may have greater susceptibility to Alzheimer’s disease (AD)-pathology. We examined the effect of sex on pathology, neurodegeneration, and memory in cognitively-unimpaired Presenilin-1 (PSEN1) E280A mutation carriers and non-carriers. Methods: We analyzed baseline data from 167 mutation carriers and 75 non-carriers (ages 30 to 53) from the Alzheimer’s Prevention Initiative Autosomal Dominant AD Trial, including florbetapir- and fludeoxyglucose-PET, MRI based hippocampal volume and cognitive testing. Results: Females exhibited better delayed recall than males, controlling for age, precuneus glucose metabolism, and mutation status, although the effect was not significant among PSEN1 mutation carriers only. APOE ε4 did not modify the effect of sex on AD biomarkers and memory. Discussion: Our findings suggest that, among cognitively-unimpaired individuals at genetic risk for autosomal-dominant AD, females may have greater cognitive resilience to AD pathology and neurodegeneration than males. Further investigation of sex-specific differences in autosomal-dominant AD is key to elucidating mechanisms of AD risk and resilience.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

January 1, 2022

Introduction: The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease (API ADAD) Trial evaluated the anti-oligomeric amyloid beta (Aβ) antibody therapy crenezumab in cognitively unimpaired members of the Colombian presenilin 1 (PSEN1) E280A kindred. We report availability, methods employed to protect confidentiality and anonymity of participants, and process for requesting and accessing baseline data. Methods: We developed mechanisms to share baseline data from the API ADAD Trial in consultation with experts and other groups sharing data from Alzheimer’s disease (AD) prevention trials, balancing the need to protect anonymity and trial integrity with making data broadly available to accelerate progress in the field. We pressure-tested deliberate and inadvertent potential threats under specific assumptions, employed a system to suppress or mask both direct and indirect identifying variables, limited and firewalled data managers, and put forth specific principles requisite to receive data. Results: Baseline demographic, PSEN1 E280A and apolipoprotein E genotypes, florbetapir and fluorodeoxyglucose positron emission tomography, magnetic resonance imaging, clinical, and cognitive data can now be requested by interested researchers. Discussion: Baseline data are publicly available; treatment data and biological samples, including baseline and treatment-related blood-based biomarker data will become available in accordance with our original trial agreement and subsequently developed Collaboration for Alzheimer’s Prevention principles. Sharing of these data will allow exploration of important questions including the differential effects of initiating an investigational AD prevention therapy both before as well as after measurable Aβ plaque deposition.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

April 21, 2021

TREM2 variants increase the risk for Alzheimer’s disease. In this issue of Neuron, Lee et al. demonstrate that TREM2-dependent microglial functions prevent accumulation and spreading of tau, but only in the presence of amyloid pathology. This provides additional fuel for the amyloid cascade hypothesis and supports a protective function of microglia.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

Introduction: Cortical thinning is a marker of neurodegeneration in Alzheimer’s disease (AD). We investigated the age-related trajectory of cortical thickness across the lifespan (9-59 years) in a Colombian kindred with autosomal dominant AD (ADAD). Methods: Two hundred eleven participants (105 presenilin-1 [PSEN1] E280A mutation carriers, 16 with cognitive impairment; 106 non-carriers) underwent magnetic resonance imaging. A piecewise linear regression identified change-points in the age-related trajectory of cortical thickness in carriers and non-carriers. Results: Unimpaired carriers exhibited elevated cortical thickness compared to non-carriers, and thickness more negatively correlated with age and cognition in carriers relative to non-carriers. We found increased cortical thickness in child carriers, after which thickness steadied compared to non-carriers prior to a rapid reduction in the decade leading up to the expected age at cognitive impairment in carriers. Discussion: Findings suggest that cortical thickness may fluctuate across the ADAD lifespan, from early-life increased thickness to atrophy proximal to clinical onset.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

September 8, 2020

Objective: To determine whether performance on the Free and Cued Selective Reminding Test (FCSRT) is associated with PET in vivo markers of brain pathology and whether it can distinguish those who will develop dementia later in life due to autosomal-dominant Alzheimer disease (AD) from age-matched controls. Methods:Twenty-four cognitively unimpaired Presenilin-1 E280A carriers (mean age 36 years) and 28 noncarriers (mean age 37 years) underwent Pittsburg compound B-PET (amyloid), flortaucipir-PET (tau), and cognitive testing, including the FCSRT (immediate and delayed free and cued recall scores). Linear regressions were used to examine the relationships among FCSRT scores, age, mean cortical amyloid, and regional tau burden. Results:Free and total recall scores did not differ between cognitively unimpaired mutation carriers and noncarriers. Greater age predicted lower free recall and delayed free and total recall scores in carriers. In cognitively impaired carriers, delayed free recall predicted greater amyloid burden and entorhinal tau, while worse immediate free recall scores predicted greater tau in the inferior temporal and entorhinal cortices. In turn, in all carriers, lower free and total recall scores predicted greater amyloid and regional tau pathology. Conclusions:FCSRT scores were associated with in vivo markers of AD-related pathology in cognitively unimpaired individuals genetically determined to develop dementia. Difficulties on free recall, particularly delayed recall, were evident earlier in the disease trajectory, while difficulties on cued recall were seen only as carriers neared the onset of dementia, consistent with the pathologic progression of the disease. Findings suggest that the FCSRT can be a useful measure to track disease progression in AD.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

July 13, 2020

Background: P301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO μPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism. Methods: Transgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18F-GE-180 TSPO μPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18F-fluordesoxyglucose (18F-FDG) μPET, and AT8 tau immunohistochemistry at 6.3-6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO μPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-β mouse models. Results: TSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11-23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-β mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3-6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3-6.7 months. Conclusions: Monitoring of TSPO expression as a surrogate of microglial activation in P301S tau transgenic mice by μPET indicates a delayed time course when compared to amyloid-β mouse models. Detrimental associations of microglial activation with outcome parameters are opposite to earlier data in amyloid-β mouse models. The contribution of microglial response to pathology accompanying amyloid-β and tau over-expression merits further investigation.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

July 1, 2020

Introduction: The API AutosomalDominant AD (ADAD) Colombia Trial is a placebo-controlled clinical trial of crenezumab in 252 cognitively unimpaired 30 to 60-year-old Presenilin 1 (PSEN1) E280A kindred members, including mutation carriers randomized to active treatment or placebo and non-carriers who receive placebo. Methods: Of the 252 enrolled, we present data on a total of 242 mutation carriers and non-carriers matched by age range, excluding data on 10 participants to protect participant confidentiality, genetic status, and trial integrity. Results: We summarize demographic, clinical, cognitive, and behavioral data from 167 mutation carriers and 75 non-carriers, 30 to 53 years of age. Carriers were significantly younger than non-carriers ((mean age ± SD) 37 ± 5 vs 42 ± 6), had significantly lower Mini Mental Status Exam (MMSE) scores (28.8 ± 1.4 vs 29.2 ± 1.0), and had consistently lower memory scores. Discussion: Although PSEN1 E280A mutation carriers in the Trial are cognitively unimpaired, they have slightly lower MMSE and memory scores than non-carriers. Their demographic characteristics are representative of the local population.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

June 1, 2020

Background: Neurofilament light chain (NfL) is a promising biomarker of active axonal injury and neuronal degeneration. We aimed to characterise cross-sectional and longitudinal plasma NfL measurements and determine the age at which NfL concentrations begin to differentiate between carriers of the presenilin 1 (PSEN1) E280A (Glu280Ala) mutation and age-matched non-carriers from the Colombian autosomal dominant Alzheimer’s disease kindred. Methods: In this cross-sectional and longitudinal cohort study, members of the familial Alzheimer’s disease Colombian kindred aged 8–75 years with no other neurological or health conditions were recruited from the Alzheimer’s Prevention Initiative Registry at the University of Antioquia (Medellín, Colombia) between Aug 1, 1995, and Dec 15, 2018. We used a single molecule array immunoassay and log-transformed data to examine the relationship between plasma NfL concentrations and age, and establish the earliest age at which NfL concentrations begin to diverge between mutation carriers and non-carriers. Findings: We enrolled a cohort of 1070 PSEN1 E280A mutation carriers and 1074 non-carriers with baseline assessments; of these participants, longitudinal measures (with a mean follow-up of 6 years) were available for 242 mutation carriers and 262 non-carriers. Plasma NfL measurements increased with age in both groups (p<0·0001), and began to differentiate carriers from non-carriers when aged 22 years (22 years before the estimated median age at mild cognitive impairment onset of 44 years), although the ability of plasma NfL to discriminate between carriers and non-carriers only reached high sensitivity close to the age of clinical onset. Interpretation: Our findings further support the promise of plasma NfL as a biomarker of active neurodegeneration in the detection and tracking of Alzheimer's disease and the evaluation of disease-modifying therapies. Funding: National Institute on Aging, National Institute of Neurological Disorders and Stroke, Banner Alzheimer's Foundation, COLCIENCIAS, the Torsten Söderberg Foundation, the Swedish Research Council, the Swedish Alzheimer Foundation, the Swedish Brain Foundation, and the Swedish state under the ALF-agreement.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

December 9, 2019

Alzheimer’s disease (AD) is currently untreatable, and therapeutic strategies aimed to slow cognitive decline have not yet been successful. Many of these approaches have targeted the amyloid cascade, indicating that novel treatment strategies are required. Recent genome-wide association studies (GWASs) have identified a number of risk factors in genes expressed in microglia, underscoring their therapeutic potential in neurodegeneration. In this review, we discuss how the recently defined functions of these AD risk genes can be targeted therapeutically to modulate microglial cell state and slow the progression of AD. Antibody-mediated stimulation of the triggering receptor of myeloid cells 2 (TREM2) is on the forefront of these candidate therapeutic approaches based on a combination of compelling human genetics and emerging preclinical data. This and other approaches to modify microglial function are a topic of intensive study and provide an opportunity for innovative AD treatments, which may be applied alone or potentially in combination with classical anti-amyloid therapies.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

August 14, 2019

Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been associated with Alzheimer’s disease (AD). TREM2 plays a critical role in microglial activation, survival, and phagocytosis; however, the pathophysiological role of sTREM2 in AD is not well understood. Understanding the role of sTREM2 in AD may reveal new pathological mechanisms and lead to the identification of therapeutic targets. We performed a genome-wide association study (GWAS) to identify genetic modifiers of CSF sTREM2 obtained from the Alzheimer’s Disease Neuroimaging Initiative. Common variants in the membrane-spanning 4-domains subfamily A (MS4A) gene region were associated with CSF sTREM2 concentrations (rs1582763; P = 1.15 × 10-15); this was replicated in independent datasets. The variants associated with increased CSF sTREM2 concentrations were associated with reduced AD risk and delayed age at onset of disease. The single-nucleotide polymorphism rs1582763 modified expression of the MS4A4A and MS4A6A genes in multiple tissues, suggesting that one or both of these genes are important for modulating sTREM2 production. Using human macrophages as a proxy for microglia, we found that MS4A4A and TREM2 colocalized on lipid rafts at the plasma membrane, that sTREM2 increased with MS4A4A overexpression, and that silencing of MS4A4A reduced sTREM2 production. These genetic, molecular, and cellular findings suggest that MS4A4A modulates sTREM2. These findings also provide a mechanistic explanation for the original GWAS signal in the MS4A locus for AD risk and indicate that TREM2 may be involved in AD pathogenesis not only in TREM2 risk-variant carriers but also in those with sporadic disease.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

June 1, 2019

Microglia adopt numerous fates with homeostatic microglia (HM) and a microglial neurodegenerative phenotype (MGnD) representing two opposite ends. A number of variants in genes selectively expressed in microglia are associated with an increased risk for neurodegenerative diseases such as Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD). Among these genes are progranulin (GRN) and the triggering receptor expressed on myeloid cells 2 (TREM2). Both cause neurodegeneration by mechanisms involving loss of function. We have now isolated microglia from Grn−/− mice and compared their transcriptomes to those of Trem2−/− mice. Surprisingly, while loss of Trem2 enhances the expression of genes associated with a homeostatic state, microglia derived from Grn−/− mice showed a reciprocal activation of the MGnD molecular signature and suppression of gene characteristic for HM. The opposite mRNA expression profiles are associated with divergent functional phenotypes. Although loss of TREM2 and progranulin resulted in opposite activation states and functional phenotypes of microglia, FDG (fluoro-2-deoxy-d-glucose)-μPET of brain revealed reduced glucose metabolism in both conditions, suggesting that opposite microglial phenotypes result in similar wide spread brain dysfunction.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

April 1, 2019

Introduction: Recruitment for Alzheimer’s disease (AD) prevention research studies is challenging because of lack of awareness among cognitively healthy adults coupled with the high screen fail rate due to participants not having a genetic risk factor or biomarker evidence of the disease. Participant recruitment registries offer one solution for efficiently and effectively identifying, characterizing, and connecting potential eligible volunteers to studies. Methods: Individuals aged 55-75 years who live in the United States and self-report not having a diagnosis of cognitive impairment such as MCI or dementia are eligible to join GeneMatch. Participants enroll online and are provided a cheek swab kit for DNA extraction and apolipoprotein E (APOE) genotyping. Participants are not told their APOE results, although the results may be used in part to help match participants to AD prevention studies. Results: As of August 2018, 75,351 participants had joined GeneMatch. Nearly 30% of participants have one APOE4 allele, and approximately 3% have two APOE4 alleles. The percentages of APOE4 heterozygotes and homozygotes are inversely associated with age (P <.001). Discussion: GeneMatch, the first trial-independent research enrollment program designed to recruit and refer cognitively healthy adults to AD prevention studies based in part on APOE test results, provides a novel mechanism to accelerate prescreening and enrollment for AD prevention trials.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

Introduction: Alzheimer’s disease (AD) pathology, including the accumulation of amyloid beta (Aβ) species and tau pathology, begins decades before the onset of cognitive impairment. This long preclinical period provides an opportunity for clinical trials designed to prevent or delay the onset of cognitive impairment due to AD. Under the umbrella of the Alzheimer’s Prevention Initiative Generation Program, therapies targeting Aβ, including CNP520 (umibecestat), a β-site-amyloid precursor protein cleaving enzyme-1 (BACE-1) inhibitor, and CAD106, an active Aβ immunotherapy, are in clinical development in preclinical AD. Methods: The Alzheimer’s Prevention Initiative Generation Program comprises two pivotal (phase 2/3) studies that assess the efficacy and safety of umibecestat and CAD106 in cognitively unimpaired individuals with high risk for developing symptoms of AD based on their age (60–75 years), APOE4 genotype, and, for heterozygotes (APOE ε2/ε4 or ε3/ε4), elevated brain amyloid. Approximately, 3500 individuals will be enrolled in either Generation Study 1 (randomized to cohort 1 [CAD106 injection or placebo, 5:3] or cohort 2 [oral umibecestat 50 mg or placebo, 3:2]) or Generation Study 2 (randomized to oral umibecestat 50 mg and 15 mg, or placebo [2:1:2]). Participants receive treatment for at least 60 months and up to a maximum of 96 months. Primary outcomes include time to event, with event defined as diagnosis of mild cognitive impairment due to AD and/or dementia due to AD, and the Alzheimer’s Prevention Initiative preclinical composite cognitive test battery. Secondary endpoints include the Clinical Dementia Rating Sum of Boxes, Repeatable Battery for the Assessment of Neuropsychological Status total score, Everyday Cognition Scale, biomarkers, and brain imaging. Discussion: The Generation Program is designed to assess the efficacy, safety, and biomarker effects of the two treatments in individuals at high risk for AD. It may also provide a plausible test of the amyloid hypothesis and further accelerate the evaluation of AD prevention therapies.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

Introduction: As the number of Alzheimer’s disease (AD) prevention studies grows, many individuals will need to learn their genetic and/or biomarker risk for the disease to determine trial eligibility. An alternative to traditional models of genetic counseling and disclosure is needed to provide comprehensive standardized counseling and disclosure of apolipoprotein E (APOE) results efficiently, safely, and effectively in the context of AD prevention trials. Methods: A multidisciplinary Genetic Testing, Counseling, and Disclosure Committee was established and charged with operationalizing the Alzheimer’s Prevention Initiative (API) Genetic Counseling and Disclosure Process for use in the API Generation Program trials. The objective was to provide consistent information to research participants before and during the APOE counseling and disclosure session using standardized educational and session materials. Results: The Genetic Testing, Counseling, and Disclosure Committee created a process consisting of eight components: requirements of APOE testing and reports, psychological readiness assessment, determination of AD risk estimates, guidance for identifying providers of disclosure, predisclosure education, APOE counseling and disclosure session materials, APOE counseling and disclosure session flow, and assessing APOE disclosure impact. Discussion: The API Genetic Counseling and Disclosure Process provides a framework for large-scale disclosure of APOE genotype results to study participants and serves as a model for disclosure of biomarker results. The process provides education to participants about the meaning and implication(s) of their APOE results while also incorporating a comprehensive assessment of disclosure impact. Data assessing participant safety and psychological well-being before and after APOE disclosure are still being collected and will be presented in a future publication.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

Introduction: Autosomal-dominant Alzheimer’s disease (ADAD) represents a crucial population for identifying prevention strategies that might modify disease course for cognitively unimpaired individuals at high imminent risk for developing symptoms due to Alzheimer’s disease (AD), that is, who have “preclinical” AD. Crenezumab is an antiamyloid monoclonal antibody that binds monomeric and aggregated forms of amyloid β, with highest affinity for oligomers; it is in development for early stages of sporadic AD and for ADAD. Methods: This is a prospective, randomized, double-blind, placebo-controlled phase 2 study of the efficacy of crenezumab versus placebo in asymptomatic PSEN1 E280A mutation carriers from family kindreds with ADAD in Colombia. Participants were randomized to receive either crenezumab or placebo for 260 weeks. The study was designed to enroll a planned total of 300 participants, including 200 preclinical mutation carriers (approximately 100 treatment, 100 placebo) and an additional control group of mutation noncarriers from the same family kindreds included to mask mutation carrier status (100 placebo only). The primary outcome is change in the Alzheimer’s Prevention Initiative ADAD Composite Cognitive Test Score from baseline to week 260. Secondary outcomes include time to progression to mild cognitive impairment due to AD or dementia due to AD; changes in dementia severity, memory, and overall neurocognitive functioning; and changes in amyloid–positron emission tomography, fluorodeoxyglucose–positron emission tomography, magnetic resonance imaging volumes, and cerebrospinal fluid levels of β amyloid, tau, and p-tau. Safety and tolerability are assessed. Results: Two hundred fifty-two participants were enrolled between December 2013 and February 2017. Discussion: We describe the first large-scale, potentially label-enabling clinical trial of a preclinical treatment for ADAD. Results from this trial will inform on the efficacy of crenezumab for delaying onset of, slowing decline in, or preventing cognitive impairment in individuals with preclinical ADAD and will foster an improved understanding of AD biomarkers and their relationship to clinical outcomes.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

Introduction: The Alzheimer’s Prevention Initiative Colombia Trial is a collaborative project involving the Neurosciences Group of Antioquia, Genentech/Roche, and the Banner Alzheimer’s Institute, studying whether crenezumab can delay or prevent the clinical onset of Alzheimer’s disease in cognitively unimpaired individuals who carry the PSEN1 E280A mutation. In an effort to optimize participant compliance and adherence and maintain interest in the trial for its duration, the Neurosciences Group of Antioquia developed an “Adherence/Retention Plan.” This plan identifies potential barriers to trial adherence related to characteristics of the participants and study partners, protocol design, sponsors, investigators, environmental factors, and characteristics of this population in general and identifies potential solutions to these barriers. Methods: Neurosciences Group of Antioquia designed and implemented a number of strategies including a) a prescreening process that emphasized detailed and staged informed consent involving the participant and family and/or friends, b) a schedule of visits and assessments designed to minimize burden while achieving the trial’s aims, c) appointment reminders, d) reimbursement for transportation and missed work, e) meals during study visits, f) birthday cards, g) quarterly newsletters, h) annual in-person feedback meetings, i) a supplemental health plan to participants, and j) a social plan to support family members. All the methods used in this plan were approved by local ethics committees. Results: By the end of the fourth year of the trial, participant retention was 94.0%, with most participants reporting that they felt “very satisfied” with their participation in the trial. Discussion: The Adherence/Retention Plan plays a crucial role in maintaining adherence and compliance needed to achieve the ambitious goals of the Alzheimer’s Prevention Initiative-Colombia Autosomal Dominant Alzheimer’s Disease Trial and may offer guideposts for other prevention trials.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

November 1, 2014

Background There is growing interest in the evaluation of preclinical Alzheimer’s disease (AD) treatments. As a result, there is a need to identify a cognitive composite that is sensitive to track preclinical AD decline to be used as a primary endpoint in treatment trials. Methods Longitudinal data from initially cognitively normal, 70- to 85-year-old participants in three cohort studies of aging and dementia from the Rush Alzheimer’s Disease Center were examined to empirically define a composite cognitive endpoint that is sensitive to detect and track cognitive decline before the onset of cognitive impairment. The mean-to-standard deviation ratios (MSDRs) of change over time were calculated in a search for the optimal combination of cognitive tests/subtests drawn from the neuropsychological battery in cognitively normal participants who subsequently progressed to clinical stages of AD during 2- and 5-year periods, using data from those who remained unimpaired during the same period to correct for aging and practice effects. Combinations that performed well were then evaluated for representation of relevant cognitive domains, robustness across individual years before diagnosis, and occurrence of selected items within top performing combinations. Results The optimal composite cognitive test score comprised seven cognitive tests/subtests with an MSDR = 0.964. By comparison, the most sensitive individual test score was Logical Memory Delayed Recall with an MSDR = 0.64. Conclusions We have identified a composite cognitive test score representing multiple cognitive domains that has improved power compared with the most sensitive single test item to track preclinical AD decline and evaluate preclinical AD treatments. We are confirming the power of the composite in independent cohorts and with other analytical approaches, which may result in refinements, have designated it as the primary endpoint in the Alzheimer’s Prevention Initiative’s preclinical treatment trials for individuals at high imminent risk for developing symptoms due to late-onset AD.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery