Insight
is our reward

Publications in Alzheimer Disease by NOMIS researchers

NOMIS Researcher(s)

Purpose: Second-generation tau radiotracers for use with positron emission tomography (PET) have been developed for visualization of tau deposits in vivo. For several β-amyloid and first-generation tau-PET radiotracers, it has been shown that early-phase images can be used as a surrogate of neuronal injury. Therefore, we investigated the performance of early acquisitions of the novel tau-PET radiotracer [18F]PI-2620 as a potential substitute for [18F]fluorodeoxyglucose ([18F]FDG). Methods: Twenty-six subjects were referred with suspected tauopathies or overlapping parkinsonian syndromes (Alzheimer’s disease, progressive supranuclear palsy, corticobasal syndrome, multi-system atrophy, Parkinson’s disease, multi-system atrophy, Parkinson’s disease, frontotemporal dementia) and received a dynamic [18F]PI-2620 tau-PET (0–60 min p.i.) and static [18F]FDG-PET (30–50 min p.i.). Regional standardized uptake value ratios of early-phase images (single frame SUVr) and the blood flow estimate (R1) of [18F]PI-2620-PET were correlated with corresponding quantification of [18F]FDG-PET (global mean/cerebellar normalization). Reduced tracer uptake in cortical target regions was also interpreted visually using 3-dimensional stereotactic surface projections by three more and three less experienced readers. Spearman rank correlation coefficients were calculated between early-phase [18F]PI-2620 tau-PET and [18F]FDG-PET images for all cortical regions and frequencies of disagreement between images were compared for both more and less experienced readers. Results: Highest agreement with [18F]FDG-PET quantification was reached for [18F]PI-2620-PET acquisition from 0.5 to 2.5 min p.i. for global mean (lowest R = 0.69) and cerebellar scaling (lowest R = 0.63). Correlation coefficients (summed 0.5–2.5 min SUVr & R1) displayed strong agreement in all cortical target regions for global mean (RSUVr 0.76, RR1 = 0.77) and cerebellar normalization (RSUVr 0.68, RR1 = 0.68). Visual interpretation revealed high regional correlations between early-phase tau-PET and [18F]FDG-PET. There were no relevant differences between more and less experienced readers. Conclusion: Early-phase imaging of [18F]PI-2620 can serve as a surrogate biomarker for neuronal injury. Dynamic imaging or a dual time-point protocol for tau-PET imaging could supersede additional [18F]FDG-PET imaging by indexing both the distribution of tau and the extent of neuronal injury.

Research field(s)
Health Sciences, Clinical Medicine, Nuclear Medicine & Medical Imaging

NOMIS Researcher(s)

Published in

November 1, 2020

Importance: Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy. Region-specific tau aggregates establish the neuropathologic diagnosis of definite PSP post mortem. Future interventional trials against tau in PSP would strongly benefit from biomarkers that support diagnosis. Objective: To investigate the potential of the novel tau radiotracer 18F-PI-2620 as a biomarker in patients with clinically diagnosed PSP. Design, Setting, and Participants: In this cross-sectional study, participants underwent dynamic 18F-PI-2620 positron emission tomography (PET) from 0 to 60 minutes after injection at 5 different centers (3 in Germany, 1 in the US, and 1 in Australia). Patients with PSP (including those with Richardson syndrome [RS]) according to Movement Disorder Society PSP criteria were examined together with healthy controls and controls with disease. Four additionally referred individuals with PSP-RS and 2 with PSP-non-RS were excluded from final data analysis owing to incomplete dynamic PET scans. Data were collected from December 2016 to October 2019 and were analyzed from December 2018 to December 2019. Main Outcomes and Measures: Postmortem autoradiography was performed in independent PSP-RS and healthy control samples. By in vivo PET imaging, 18F-PI-2620 distribution volume ratios were obtained in globus pallidus internus and externus, putamen, subthalamic nucleus, substantia nigra, dorsal midbrain, dentate nucleus, dorsolateral, and medial prefrontal cortex. PET data were compared between patients with PSP and control groups and were corrected for center, age, and sex. Results: Of 60 patients with PSP, 40 (66.7%) had RS (22 men [55.0%]; mean [SD] age, 71 [6] years; mean [SD] PSP rating scale score, 38 [15]; score range, 13-71) and 20 (33.3%) had PSP-non-RS (11 men [55.0%]; mean [SD] age, 71 [9] years; mean [SD] PSP rating scale score, 24 [11]; score range, 11-41). Ten healthy controls (2 men; mean [SD] age, 67 [7] years) and 20 controls with disease (of 10 [50.0%] with Parkinson disease and multiple system atrophy, 7 were men; mean [SD] age, 61 [8] years; of 10 [50.0%] with Alzheimer disease, 5 were men; mean [SD] age, 69 [10] years). Postmortem autoradiography showed blockable 18F-PI-2620 binding in patients with PSP and no binding in healthy controls. The in vivo findings from the first large-scale observational study in PSP with 18F-PI-2620 indicated significant elevation of tracer binding in PSP target regions with strongest differences in PSP vs control groups in the globus pallidus internus (mean [SD] distribution volume ratios: PSP-RS, 1.21 [0.10]; PSP-non-RS, 1.12 [0.11]; healthy controls, 1.00 [0.08]; Parkinson disease/multiple system atrophy, 1.03 [0.05]; Alzheimer disease, 1.08 [0.06]). Sensitivity and specificity for detection of PSP-RS vs any control group were 85% and 77%, respectively, when using classification by at least 1 positive target region. Conclusions and Relevance: This multicenter evaluation indicates a value of 18F-PI-2620 to differentiate suspected patients with PSP, potentially facilitating more reliable diagnosis of PSP.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

September 1, 2020

Prion diseases are caused by PrPSc, a self-replicating pathologically misfolded protein that exerts toxicity predominantly in the brain. The administration of PrPSc causes a robust, reproducible and specific disease manifestation. Here, we have applied a combination of translating ribosome affinity purification and ribosome profiling to identify biologically relevant prion-induced changes during disease progression in a cell-type-specific and genome-wide manner. Terminally diseased mice with severe neurological symptoms showed extensive alterations in astrocytes and microglia. Surprisingly, we detected only minor changes in the translational profiles of neurons. Prion-induced alterations in glia overlapped with those identified in other neurodegenerative diseases, suggesting that similar events occur in a broad spectrum of pathologies. Our results suggest that aberrant translation within glia may suffice to cause severe neurological symptoms and may even be the primary driver of prion disease.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

May 1, 2020

Tauopathies are neurodegenerative brain diseases that are characterized by the formation of intraneuronal inclusions containing the microtubule-associated protein tau. This major hallmark defines tau pathology which is predominant in primary tauopathies, while in secondary forms additional driving forces are involved. In the course of the disease, different brain areas degenerate and lead to severe defects of language, behavior and movement. Although neuropathologically heterogeneous, primary tauopathies share a common feature, which is the generation of abnormal tau species that aggregate and progress into filamentous deposits in neurons. Mechanisms that are involved in this disease-related process offer a broad range of targets for disease-modifying therapeutics. The present review provides an up-to-date overview of currently known targets in primary tauopathies and their possible therapeutic modulation. It is structured into four major targets, the post-translational modifications of tau and tau aggregation, protein homeostasis, disease propagation, and tau genetics. Chances, as well as obstacles in the development of effective therapies are highlighted. Some therapeutic strategies, e.g., passive or active immunization, have already reached clinical development, raising hopes for affected patients. Other concepts, e.g., distinct modulators of proteostasis, are at the ready to be developed into promising future therapies. This article is part of the special issue entitled ‘The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders’.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

February 1, 2020

A rapidly ageing population and a limited therapeutic toolbox urgently necessitate new approaches to treat neurodegenerative diseases. Brain ageing, the key risk factor for neurodegeneration, involves complex cellular and molecular processes that eventually result in cognitive decline. Although cell-intrinsic defects in neurons and glia may partially explain this decline, cell-extrinsic changes in the systemic environment, mediated by blood, have recently been shown to contribute to brain dysfunction with age. Here, we review the current understanding of how systemic factors mediate brain ageing, how these factors are regulated and how we can translate these findings into therapies for neurodegenerative diseases.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

February 1, 2020

Microglia become progressively activated and seemingly dysfunctional with age, and genetic studies have linked these cells to the pathogenesis of a growing number of neurodegenerative diseases. Here we report a striking buildup of lipid droplets in microglia with aging in mouse and human brains. These cells, which we call ‘lipid-droplet-accumulating microglia’ (LDAM), are defective in phagocytosis, produce high levels of reactive oxygen species and secrete proinflammatory cytokines. RNA-sequencing analysis of LDAM revealed a transcriptional profile driven by innate inflammation that is distinct from previously reported microglial states. An unbiased CRISPR–Cas9 screen identified genetic modifiers of lipid droplet formation; surprisingly, variants of several of these genes, including progranulin (GRN), are causes of autosomal-dominant forms of human neurodegenerative diseases. We therefore propose that LDAM contribute to age-related and genetic forms of neurodegeneration.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

September 1, 2019

Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

April 11, 2019

Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic function and the cognitive effects of restoring this function remain unknown. We combined CRISPR–Cas9 knockout screens with RNA sequencing analysis to discover age-related genetic modifiers of microglial phagocytosis. These screens identified CD22, a canonical B cell receptor, as a negative regulator of phagocytosis that is upregulated on aged microglia. CD22 mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-β oligomers and α-synuclein fibrils in vivo. Long-term central nervous system delivery of an antibody that blocks CD22 function reprograms microglia towards a homeostatic transcriptional state and improves cognitive function in aged mice. These findings elucidate a mechanism of age-related microglial impairment and a strategy to restore homeostasis in the ageing brain.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

February 4, 2019

Background: Autosomal dominant Alzheimer’s disease (ADAD) is distinguished from late-onset AD by early striatal amyloid-β deposition. To determine whether striatal Pittsburgh compound B (PiB)-PET measurements of amyloid-β can help predict disease severity in ADAD, we compared relationships of striatal and neocortical PiB-PET to age, tau-PET, and memory performance in the Colombian Presenilin 1 E280A kindred. Methods: Fourteen carriers (age = 28-42, Mini-Mental State Examination = 26-30) and 20 age-matched non-carriers were evaluated using PiB, flortaucipir (FTP; tau), and memory testing (CERAD Word List Learning). PiB-PET signal was measured in neocortical and striatal aggregates. FTP-PET signal was measured in entorhinal cortex. Results: Compared to non-carriers, mutation carriers had age-related elevations in both neocortical and striatal PiB binding. The PiB elevation in carriers was significantly greater in the striatum than in the neocortex. In mutation carriers, PiB binding in both the neocortex and the striatum is related to entorhinal FTP; however, the association was stronger with the striatum. Only striatal PiB was associated with worse memory. Remarkably, PiB binding in the striatum, but not in the neocortex, predicted entorhinal FTP and lower memory scores after adjusting for age, indicating that striatal PiB identified the carriers with the most severe disease. Conclusions: Based on these preliminary cross-sectional findings, striatal PiB-PET measurements may offer particular value in the detection and tracking of preclinical ADAD, informing a mutation carrier’s prognosis and evaluating amyloid-β-modifying ADAD treatments.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

January 16, 2019

Microglia are increasingly recognized for their major contributions during brain development and neurodegenerative disease. It is currently unknown whether these functions are carried out by subsets of microglia during different stages of development and adulthood or within specific brain regions. Here, we performed deep single-cell RNA sequencing (scRNA-seq) of microglia and related myeloid cells sorted from various regions of embryonic, early postnatal, and adult mouse brains. We found that the majority of adult microglia expressing homeostatic genes are remarkably similar in transcriptomes, regardless of brain region. By contrast, early postnatal microglia are more heterogeneous. We discovered a proliferative-region-associated microglia (PAM) subset, mainly found in developing white matter, that shares a characteristic gene signature with degenerative disease-associated microglia (DAM). Such PAM have amoeboid morphology, are metabolically active, and phagocytose newly formed oligodendrocytes. This scRNA-seq atlas will be a valuable resource for dissecting innate immune functions in health and disease.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

January 17, 2018

Progressive supranuclear palsy (PSP) is a neurodegenerative movement disorder characterized by deposition of fibrillar aggregates of 4R tau-protein in neurons and glial cells of the brain. These deposits are a key neuropathological finding, allowing a diagnosis of “definite PSP,” which is usually established post mortem. To date criteria for clinical diagnosis of PSP in vivo do not include biomarkers of tau pathology. For intervention trials, it is increasingly important to (i) establish biomarkers for an early diagnosis and (ii) to develop biomarkers that correlate with disease progression of PSP. [18F]-THK5351 is a novel PET-ligand that may afford in vivo visualization and quantification of tau-related alterations. We investigated binding characteristics of [18F]-THK5351 in patients with clinically diagnosed PSP and correlate tracer uptake with clinical findings. Eleven patients (68.4 ± 7.4 year; N = 6 female) with probable PSP according to current clinical criteria and nine healthy controls (71.7 ± 7.2 year; N = 4 female) underwent [18F]-THK5351 PET scanning. Voxel-wise statistical parametric comparison and volume-of-interest based quantification of standardized-uptake-values (SUV) were conducted using the cerebellar cortex as reference region. We correlated disease severity as measured with the help of the PSP Rating Scale (PSPRS) as well as several other clinical parameters with the individual PET findings. By voxel-wise mapping of [18F]-THK5351 uptake in the patient group we delineated typical distribution patterns that fit to known tau topology for PSP post mortem. Quantitative analysis indicated the strongest discrimination between PSP patients and healthy controls based on tracer uptake in the midbrain (+35%; p = 3.01E-7; Cohen’s d: 4.0), followed by the globus pallidus, frontal cortex, and medulla oblongata. Midbrain [18F]-THK5351 uptake correlated well with clinical severity as measured by PSPRS (R = 0.66; p = 0.026). OCT and MRI delineated PSP patients from healthy controls by use of established discrimination thresholds but only OCT did as well correlate with clinical severity (R = 0.79; p = 0.024). Regional [18F]-THK5351 binding patterns correlated well with the established post mortem distribution of lesions in PSP and with clinical severity. The contribution of possible MAO-B binding to the [18F]-THK5351 signal needs to be further evaluated, but nevertheless [18F]-THK5351 PET may still serve as valuable biomarker for diagnosis of PSP.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

April 14, 2016

Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson’s disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

January 1, 2016

The beta amyloid (Aβ) and other aggregating proteins in the brain increase with age and are frequently found within neurons. The mechanistic relationship between intracellular amyloid, aging and neurodegeneration is not, however, well understood. We use a proteotoxicity model based upon the inducible expression of Aβ in a human central nervous system nerve cell line to characterize a distinct form of nerve cell death caused by intracellular Aβ. It is shown that intracellular Aβ initiates a toxic inflammatory response leading to the cell’s demise. Aβ induces the expression of multiple proinflammatory genes and an increase in both arachidonic acid and eicosanoids, including prostaglandins that are neuroprotective and leukotrienes that potentiate death. Cannabinoids such as tetrahydrocannabinol stimulate the removal of intraneuronal Aβ, block the inflammatory response, and are protective. Altogether these data show that there is a complex and likely autocatalytic inflammatory response within nerve cells caused by the accumulation of intracellular Aβ, and that this early form of proteotoxicity can be blocked by the activation of cannabinoid receptors.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

December 1, 2012

Background: Fibrillar amyloid-β (Aβ) is thought to begin accumulating in the brain many years before the onset of clinical impairment in patients with Alzheimer’s disease. By assessing the accumulation of Aβ in people at risk of genetic forms of Alzheimer’s disease, we can identify how early preclinical changes start in individuals certain to develop dementia later in life. We sought to characterise the age-related accumulation of Aβ deposition in presenilin 1 (PSEN1) E280A mutation carriers across the spectrum of preclinical disease. Methods: Between Aug 1 and Dec 6, 2011, members of the familial Alzheimer’s disease Colombian kindred aged 18-60 years were recruited from the Alzheimer’s Prevention Initiative’s registry at the University of Antioquia, Medellín, Colombia. Cross-sectional assessment using florbetapir PET was done in symptomatic mutation carriers with mild cognitive impairment or mild dementia, asymptomatic carriers, and asymptomatic non-carriers. These assessments were done at the Banner Alzheimer’s Institute in Phoenix, AZ, USA. A cortical grey matter mask consisting of six predefined regions was used to measure mean cortical florbetapir PET binding. Cortical-to-pontine standard-uptake value ratios were used to characterise the cross-sectional accumulation of fibrillar Aβ deposition in carriers and non-carriers with regression analysis and to estimate the trajectories of fibrillar Aβ deposition. Findings: We enrolled a cohort of 11 symptomatic individuals, 19 presymptomatic mutation carriers, and 20 asymptomatic non-carriers, ranging in age from 20 to 56 years. There was greater florbetapir binding in asymptomatic PSEN1 E280A mutation carriers than in age matched non-carriers. Fibrillar Aβ began to accumulate in PSEN 1E280A mutation carriers at a mean age of 28·2 years (95% CI 27·3-33·4), about 16 years and 21 years before the predicted median ages at mild cognitive impairment and dementia onset, respectively. 18F florbetapir binding rose steeply over the next 9·4 years and plateaued at a mean age of 37·6 years (95% CI 35·3-40·2), about 6 and 11 years before the expected respective median ages at mild cognitive impairment and dementia onset. Prominent florbetapir binding was seen in the anterior and posterior cingulate, precuneus, and parietotemporal and frontal grey matter, as well as in the basal ganglia. Binding in the basal ganglia was not seen earlier or more prominently than in other regions. Interpretation: These findings contribute to the understanding of preclinical familial Alzheimer’s disease and help set the stage for assessment of amyloid-modifying treatments in the prevention of familial Alzheimer’s disease. Funding: Avid Radiopharmaceuticals, Banner Alzheimer’s Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Colciencias, National Institute on Aging, and the State of Arizona. © 2012 Elsevier Ltd.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery