Insight
is our reward

Publications in Movement Disorders by NOMIS researchers

NOMIS Researcher(s)

Published in

October 1, 2022

Background: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. Objective: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. Methods: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). Results: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10−6, all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). Interpretation: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

April 1, 2021

Background: Neuroinflammation has received growing interest as a therapeutic target in neurodegenerative disorders, including 4-repeat tauopathies. Objectives: The aim of this cross-sectional study was to investigate 18 kDa translocator protein positron emission tomography (PET) as a biomarker for microglial activation in the 4-repeat tauopathies corticobasal degeneration and progressive supranuclear palsy. Methods: Specific binding of the 18 kDa translocator protein tracer 18F-GE-180 was determined by serial PET during pharmacological depletion of microglia in a 4-repeat tau mouse model. The 18 kDa translocator protein PET was performed in 30 patients with corticobasal syndrome (68 ± 9 years, 16 women) and 14 patients with progressive supranuclear palsy (69 ± 9 years, 8 women), and 13 control subjects (70 ± 7 years, 7 women). Group comparisons and associations with parameters of disease progression were assessed by region-based and voxel-wise analyses. Results: Tracer binding was significantly reduced after pharmacological depletion of microglia in 4-repeat tau mice. Elevated 18 kDa translocator protein labeling was observed in the subcortical brain areas of patients with corticobasal syndrome and progressive supranuclear palsy when compared with controls and was most pronounced in the globus pallidus internus, whereas only patients with corticobasal syndrome showed additionally elevated tracer binding in motor and supplemental motor areas. The 18 kDa translocator protein labeling was not correlated with parameters of disease progression in corticobasal syndrome and progressive supranuclear palsy but allowed sensitive detection in patients with 4-repeat tauopathies by a multiregion classifier. Conclusions: Our data indicate that 18F-GE-180 PET detects microglial activation in the brain of patients with 4-repeat tauopathy, fitting to predilection sites of the phenotype. The 18 kDa translocator protein PET has a potential for monitoring neuroinflammation in 4-repeat tauopathies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

June 1, 2020

Background: The influence of concomitant brain pathologies on the progression rate in PSP is unclear. Objectives: To analyze the frequency and severity of copathologies and their impact on the progression in PSP. Methods: We analyzed clinic-pathological features of 101 PSP patients. Diagnoses and stages of copathologies were established according to standardized criteria, including Alzheimer’s disease–related pathology, argyrophilic grains, Lewy-related pathology, transactive response DNA-binding protein 43 pathology, fused in sarcoma pathology, cerebral amyloid angiopathy, and small vessel disease. Demographic data and major clinical milestones (frequency and latency to onset) were extracted from patients’ files. Results: Only 8% of 101 patients presented with pure PSP pathology without any copathology. Alzheimer’s disease–related pathology was the most frequent (84%), followed by argyrophilic grains (58%), both occurring as single copathology or in combination with other proteinopathies or cerebrovascular disease. Lewy-related and transactive response DNA-binding protein 43 copathology occurred rarely (8% and 6%, respectively). Fused in sarcoma–positive cases were not found. While being common, copathology was mostly mild in severity, with the exception of frequently widespread argyrophilic grains. Small vessel disease was also frequent (65%). Cerebral amyloid angiopathy occurred only in the presence of Alzheimer’s disease–related changes (25%). The copathologies did not have major impact on prevalence and time frame of major disease milestones. Conclusions: In PSP, concomitant neurodegenerative proteinopathies or cerebrovascular diseases are frequent, but generally mild in severity. Our data confirmed that four repeat tau is still the most relevant target for PSP, whereas the impact of copathologies on progression rate appears to be of less importance. This is relevant information for the development of disease-modifying therapies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery