Insight
is our reward

Publications in Natural Sciences by NOMIS researchers

NOMIS Researcher(s)

It has recently been proposed that a key motivation for joining groups is the protection from the negative consequences of undesirable outcomes. To test this claim, we investigated how experienced outcomes triggering loss and regret impacted people’s tendency to decide alone or join a group, and how decisions differed when voluntarily made alone versus in group. Replicated across two experiments, participants (n = 125 and n = 496) selected whether to play alone or contribute their vote to a group decision. Next, they chose between two lotteries with different probabilities of winning and losing. The higher the negative outcome, the more participants switched from deciding alone to with others. When joining a group to choose the lottery, choices were less driven by outcome and regret anticipation. Moreover, negative outcomes experienced alone, not part of a group vote, led to worse subsequent choices than positive outcomes. These results suggest that the protective shield of the collective reduces the influence of negative emotions that may help individuals re-evaluate past choices.

Research field(s)
Natural Sciences, Biology, Evolutionary Biology

NOMIS Researcher(s)

Published in

January 1, 2020

In nanomedicine, iron oxide nanoparticles are at an advanced stage, being commercialized for cancer treatment and iron-deficiency anemia treatment. Their therapeutic efficacy comes from their ability to target a tissue, activate a drug, locally produce a temperature increase following (or not) the application of an external source of energy, modify genes or activate various biological materials, or replace diseased cells by stem cells. Owing to these various mechanisms of action, they can potentially be used for treating a whole range of different diseases, making them more appealing than conventional drugs that target a more limited number of indications.

Research field(s)
Natural Sciences, Chemistry, Medicinal & Biomolecular Chemistry

NOMIS Researcher(s)

January 1, 2020

The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

Published in

January 1, 2020

The water-energy-food nexus concept is criticized as not yet fit for deeply integrated and contested governance agendas. One problem is how to achieve equitable risk governance and management where there is low consensus on priorities, poor inclusion and coordination of risk assessment procedures, and a weak emphasis placed on cross-scale and sectoral interactions over time. Participatory system dynamics modeling processes and analyses are promising approaches for such challenges but are currently underutilized in nexus research and policy. This paper shares our experience implementing one such analysis in the Mekong river basin, a paradigmatic example for international nexus research. Our transdisciplinary research design combined participatory causal loop diagramming processes, scenario modeling, and a new resilience analysis method to identify and test anticipated water-energy-food risks in Kratie and Stung Treng provinces in northeastern Cambodia. Our process generated new understanding of potential cross-sectoral and cross-level risks from major hydropower development in the region. The results showed expected trade-offs between national level infrastructure programs and local level food security, but also some new insights into the effects local population increases may have on local food production and consumption even before hydropower developments are built. The analysis shows the benefit of evaluating risks in the nexus at different system levels and over time because of how system dynamics and inflection points are taken into account. Additionally, our case illustrates the contribution participatory system-thinking processes can make to risk assessment procedures for complex systems transitions. We originally anticipated that any new capacity reported by partners and participants would come from our modeling results produced at the end of the process. However, participants in the modeling procedures also found the experience powerful the information sharing, rapid risk assessment, and personal learning it enabled. A lesson from our experience reinforces a message from the transdisciplinary research field that has not yet been absorbed into the nexus research and policy field wholeheartedly: we do not have to wait for perfect data and incontestable results before making a positive contribution to anticipating and responding to risks that emerge from nexus relations if we apply participatory and systems-thinking informed approaches.

Research field(s)
Natural Sciences, Biology, Ecology

NOMIS Researcher(s)

Published in

January 1, 2020

null

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Meteorology & Atmospheric Sciences

NOMIS Researcher(s)

December 1, 2019

We propose an efficient microwave-photonic modulator as a resource for stationary entangled microwave-optical fields and develop the theory for deterministic entanglement generation and quantum state transfer in multi-resonant electro-optic systems. The device is based on a single crystal whispering gallery mode resonator integrated into a 3D-microwave cavity. The specific design relies on a new combination of thin-film technology and conventional machining that is optimized for the lowest dissipation rates in the microwave, optical, and mechanical domains. We extract important device properties from finite-element simulations and predict continuous variable entanglement generation rates on the order of a Mebit/s for optical pump powers of only a few tens of microwatts. We compare the quantum state transfer fidelities of coherent, squeezed, and non-Gaussian cat states for both teleportation and direct conversion protocols under realistic conditions. Combining the unique capabilities of circuit quantum electrodynamics with the resilience of fiber optic communication could facilitate long-distance solid-state qubit networks, new methods for quantum signal synthesis, quantum key distribution, and quantum enhanced detection, as well as more power-efficient classical sensing and modulation.

Research field(s)
Natural Sciences, Physics & Astronomy, General Physics

NOMIS Researcher(s)

Published in

December 1, 2019

Participatory modeling is a potentially high-impact approach for catalyzing fundamental sustainability transformations. We test if participation in a group system dynamics modeling exercise increases participants’ agency through a novel method to evaluate potential behavioral change using expectation measures. A water-energy-food nexus—a functionally interdependent but underconceptualized system with low consensus and high scientific uncertainty—was mapped, and its evolution simulated by 46 participants in three interventions in a region undergoing hydropower infrastructure development in Northeastern Cambodia. Participants’ system-related expectations were measured before and after the interventions. Our results suggest that participants became significantly more optimistic about their individual agency to increase agricultural and fishing income and, interestingly, less likely to participate in local government development planning procedures. Findings also reveal how some uncertainties for multiple variables were reduced within and across the groups. Such converging expectations suggest that participatory modeling could contribute to making collective solutions and institutionalized agreements more likely. This research contributes to innovation in sustainability because it unpacks some underlying mechanics of how participatory processes can lead to new adaptive capacities, shared perspectives, and collective actions.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Meteorology & Atmospheric Sciences

NOMIS Researcher(s)

April 1, 2019

For nexus approaches to be successful in their analysis and influence, integration dynamics must be understood in the context of larger power dynamics. Current analysis barely take this dimension into account. In this article, we aim to delimit and understand the power-related enabling conditions for integration processes in a situation of water, food and energy conflicts in Cambodia. To do so, we reflect on our experiences and outcomes in a knowledge co-production approach for identifying nexus indicators in a WWF Conservation Mekong Flooded Forest Landscape. We conduct an analysis of stakeholder and partner qualitative interview data collected within the LIVES (Linked Indicators for Vital Ecosystem Services) project to explore three examples how we engaged with power dynamics in the course of the research. By doing so, this article provides first (1) learning on existing challenges regarding integration in the nexus, then (2) it analyses effects of coproduction processes when considering power dynamics in the nexus both in terms of stalemate and enabling conditions for reinforced integration. Finally (3), this article analyses the role that plays structure and agency in such integration processes.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

Published in

January 1, 2019

In medicine, obtaining simply a resolute and accurate image of an organ of interest is a real challenge. To achieve this, it has recently been proposed to use combined methods in which standard imaging (MRI, PAI, CT, PET/SPEC, USI, OI) is carried out in the presence of iron oxide nanoparticles, thus making it possible to image certain tissues/cells through the specific targeting of these nanoparticles, hence resulting in improved imaging contrast and resolution. Here, the advantages and drawbacks of these combined methods are presented as well as some of their recent medical applications.

Research field(s)
Natural Sciences, Chemistry, Organic Chemistry

NOMIS Researcher(s)

January 1, 2019

As the water-energy-food (WEF) nexus becomes an increasingly common framework for bridging science and policy, there is a growing need to unpack and make explicit many of the methods and assumptions being used to operationalize the nexus. In this paper, we focus on two common approaches to nexus research, quantitative modeling and futures thinking, and the ways that each set of methodological tools address uncertainty. We first review the underlying assumptions of each approach with a focus on sources of and ability to measure uncertainty, and potential complementarities. Quantitative modeling takes a probabilistic approach to predicting the likelihood of a specific outcome or future state based on estimates of current system dynamics. In contrast, futures thinking approaches, such as scenario processes, explore novel changes that cannot be fully predicted or even anticipated based on current understandings of the nexus. We then examine a set of applied nexus projects that bridge science and policy-making contexts to better understand practitioner experiences with different methodological tools and how they are utilized to navigate uncertainty. We explore one nexus case study, LIVES Cambodia, in-depth, to better understand the opportunities and challenges associated with participatory modeling and stakeholder engagement with uncertainty in a policy-making context. Across the cases, practitioners identify the complementarity between modeling and futures thinking approaches, and those projects that integrated both into the planning process experienced benefits from having multiple angles on uncertainty within the nexus. In particular, stakeholder engagement provided critical opportunities to address some types of uncertainties (e.g., data gaps) through the use of local knowledge. Explicit discussions of model uncertainty and use of scenario processes also enabled stakeholders to deepen their understandings of uncertainties and envision policy pathways that would be robust to uncertainty. In many senses, models became boundary objects that encouraged critical thinking and questioning of assumptions across diverse stakeholders. And, for some nexus projects, confronting uncertainty in explicit and transparent ways build capacity for policy flexibility and adaptiveness. We conclude with a discussion of when and how these benefits can be fully realized through the strategic use of appropriate approaches to characterizing and navigating nexus uncertainty.

Research field(s)
Natural Sciences, Earth & Environmental Sciences, Environmental Sciences

NOMIS Researcher(s)

June 13, 2018

Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl (ScTyrY43G) and a phenylalanyl (MmPheT413G) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyrY43G and MmPheT413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyrY43G and MmPheT413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.

Research field(s)
Natural Sciences, Chemistry, General Chemistry