Insight
is our reward

Publications in Medicinal & Biomolecular Chemistry by NOMIS researchers

NOMIS Researcher(s)

April 8, 2022

Recent efforts in understanding the course and severity of SARS-CoV-2 infections have highlighted both potentially beneficial and detrimental effects of cross-reactive antibodies derived from memory immunity. Specifically, due to a significant degree of sequence similarity between SARS-CoV-2 and other members of the coronavirus family, memory B-cells that emerged from previous infections with endemic human coronaviruses (HCoVs) could be reactivated upon encountering the newly emerged SARS-CoV-2, thus prompting the production of cross-reactive antibodies. Determining the affinity and concentration of these potentially cross-reactive antibodies to the new SARS-CoV-2 antigens is therefore particularly important when assessing both existing immunity against common HCoVs and adverse effects like antibody-dependent enhancement (ADE) in COVID-19. However, these two fundamental parameters cannot easily be disentangled by surface-based assays like enzyme-linked immunosorbent assays (ELISAs), which are routinely used to assess cross-reactivity. Here, we have used microfluidic antibody affinity profiling (MAAP) to quantitatively evaluate the humoral immune response in COVID-19 convalescent patients by determining both antibody affinity and concentration against spike antigens of SARS-CoV-2 directly in nine convalescent COVID-19 patient and three pre-pandemic sera that were seropositive for common HCoVs. All 12 sera contained low concentrations of high-affinity antibodies against spike antigens of HCoV-NL63 and HCoV-HKU1, indicative of past exposure to these pathogens, while the affinity against the SARS-CoV-2 spike protein was lower. These results suggest that cross-reactivity as a consequence of memory reactivation upon an acute SARS-CoV-2 infection may not be a significant factor in generating immunity against SARS-CoV-2.

Research field(s)
Natural Sciences, Chemistry, Medicinal & Biomolecular Chemistry

NOMIS Researcher(s)

Published in

August 1, 2020

Magnetotactic bacteria (MTB) synthesize iron oxide (Fe3O4) nanoparticles (NPs), called magnetosomes, with large sizes leading to a ferrimagnetic behavior and a stable magnetic moment at physiological temperature, a chain structure that prevents NP aggregation and promotes uniform NP distribution, and a mineral core of magnetite/maghemite composition, which can be stabilized by an organic coating. Such properties can favor magnetosome administration to humans under certain optimized non-toxic conditions of fabrication. In this review, I describe the fabrication methods, physico-chemical properties, and the anti-tumor activity of different types of MTB/magnetosome preparations, highlighting the bio-compatibility and excellent anti-tumor activity of purified non-pyrogenic magnetosome minerals stabilized by a synthetic chemical compound.

Research field(s)
Natural Sciences, Chemistry, Medicinal & Biomolecular Chemistry

NOMIS Researcher(s)

Published in

January 1, 2020

In nanomedicine, iron oxide nanoparticles are at an advanced stage, being commercialized for cancer treatment and iron-deficiency anemia treatment. Their therapeutic efficacy comes from their ability to target a tissue, activate a drug, locally produce a temperature increase following (or not) the application of an external source of energy, modify genes or activate various biological materials, or replace diseased cells by stem cells. Owing to these various mechanisms of action, they can potentially be used for treating a whole range of different diseases, making them more appealing than conventional drugs that target a more limited number of indications.

Research field(s)
Natural Sciences, Chemistry, Medicinal & Biomolecular Chemistry