Insight
is our reward

Publications in Applied Physics by NOMIS researchers

NOMIS Researcher(s)

Published in

December 15, 2022

Hybrid semiconductor–superconductor devices hold great promise for realizing topological quantum computing with Majorana zero modes1–5. However, multiple claims of Majorana detection, based on either tunnelling6–10 or Coulomb blockade (CB) spectroscopy11,12, remain disputed. Here we devise an experimental protocol that allows us to perform both types of measurement on the same hybrid island by adjusting its charging energy via tunable junctions to the normal leads. This method reduces ambiguities of Majorana detections by checking the consistency between CB spectroscopy and zero-bias peaks in non-blockaded transport. Specifically, we observe junction-dependent, even–odd modulated, single-electron CB peaks in InAs/Al hybrid nanowires without concomitant low-bias peaks in tunnelling spectroscopy. We provide a theoretical interpretation of the experimental observations in terms of low-energy, longitudinally confined island states rather than overlapping Majorana modes. Our results highlight the importance of combined measurements on the same device for the identification of topological Majorana zero modes.

Research field(s)
Natural Sciences, Physics & Astronomy, Applied Physics

NOMIS Researcher(s)

October 29, 2020

Superinductors have a characteristic impedance exceeding the resistance quantum RQ≈6.45kω, which leads to a suppression of ground-state charge fluctuations. Applications include the realization of hardware-protected qubits for fault-tolerant quantum computing, improved coupling to small-dipole-moment objects, and the definition of a new quantum-metrology standard for the ampere. In this work, we refute the widespread notion that superinductors can only be implemented based on kinetic inductance, i.e., using disordered superconductors or Josephson-junction arrays. We present the modeling, fabrication, and characterization of 104 planar aluminum-coil resonators with a characteristic impedance up to 30.9 kω at 5.6 GHz and a capacitance down to ≤1 fF, with low loss and a power handling reaching 108 intracavity photons. Geometric superinductors are free of uncontrolled tunneling events and offer high reproducibility, linearity, and the ability to couple magnetically – properties that significantly broaden the scope of future quantum circuits.

Research field(s)
Natural Sciences, Physics & Astronomy, Applied Physics