Insight
is our reward

Publications in Copy Number Variation by NOMIS researchers

NOMIS Researcher(s)

Published in

October 15, 2020

Adenosquamous cancer of the pancreas (ASCP) is a subtype of pancreatic cancer that has a worse prognosis and greater metastatic potential than the more common pancreatic ductal adenocarcinoma (PDAC) subtype. To distinguish the genomic landscape of ASCP and identify actionable targets for this lethal cancer, we applied DNA content flow cytometry to a series of 15 tumor samples including five patient-derived xenografts (PDX). We interrogated purified sorted tumor fractions from these samples with whole-genome copy-number variant (CNV), whole-exome sequencing, and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analyses. These identified a variety of somatic genomic lesions targeting chromatin regulators in ASCP genomes that were superimposed on well-characterized genomic lesions including mutations in TP53 (87%) and KRAS (73%), amplification of MYC (47%), and homozygous deletion of CDKN2A (40%) that are common in PDACs. Furthermore, a comparison of ATAC-seq profiles of three ASCP and three PDAC genomes using flow-sorted PDX models identified genes with accessible chromatin unique to the ASCP genomes, including the lysine methyltransferase SMYD2 and the pancreatic cancer stem cell regulator RORC in all three ASCPs, and a FGFR1-ERLIN2 fusion associated with focal CNVs in both genes in a single ASCP. Finally, we demonstrate significant activity of a pan FGFR inhibitor against organoids derived from the FGFR1-ERLIN2 fusion-positive ASCP PDX model. Our results suggest that the genomic and epigenomic landscape of ASCP provide new strategies for targeting this aggressive subtype of pancreatic cancer.

Research field(s)
Health Sciences, Clinical Medicine, Oncology & Carcinogenesis

NOMIS Researcher(s)

Published in

March 1, 2018

High-throughput sequencing (HTS) has revolutionized genetics by enabling the detection of sequence variants at hitherto unprecedented large scale. Despite these advances, however, there are still remaining challenges in the complete coverage of targeted regions (genes, exome or genome) as well as in HTS data analysis and interpretation. Moreover, it is easy to get overwhelmed by the plethora of available methods and tools for HTS. Here, we review the step-by-step process from the generation of sequence data to molecular diagnosis of Mendelian diseases. Highlighting advantages and limitations, this review addresses the current state of (1) HTS technologies, considering targeted, whole-exome, and whole-genome sequencing on short- and long-read platforms; (2) read alignment, variant calling and interpretation; as well as (3) regulatory issues related to genetic counseling, reimbursement, and data storage.

Research field(s)
Health Sciences, Biomedical Research, Genetics & Heredity