Insight
is our reward

Publications in Journal of Molecular Medicine by NOMIS researchers

NOMIS Researcher(s)

June 1, 2021

Abstract: The progression of prion diseases is accompanied by the accumulation of prions in the brain. Ablation of microglia enhances prion accumulation and accelerates disease progression, suggesting that microglia play a neuroprotective role by clearing prions. However, the mechanisms underlying the phagocytosis and clearance of prion are largely unknown. The macrophage scavenger receptor 1 (Msr1) is an important phagocytic receptor expressed by microglia in the brain and is involved in the uptake and clearance of soluble amyloid-β. We therefore asked whether Msr1 might play a role in prion clearance and assessed the scavenger function of Msr1 in prion pathogenesis. We found that Msr1 expression was upregulated in prion-infected mouse brains. However, Msr1 deficiency did not change prion disease progression or lesion patterns. Prion deposition in Msr1 deficient mice was similar to their wild-type littermates. In addition, prion-induced neuroinflammation was not affected by Msr1 ablation. We conclude that Msr1 does not play a major role in prion pathogenesis. Key messages: Msr1 expression is upregulated in prion-infected mouse brains at the terminal stageMsr1 deficiency does not affect prion disease progressionMsr1 does not play a major role in prion clearance or prion pathogenesisMicroglia-mediated phagocytosis and clearance of Aβ and prion may adopt distinct molecular pathways.

Research field(s)
Health Sciences, Clinical Medicine, Immunology

NOMIS Researcher(s)

April 1, 2021

Along with emergence of the organoids, their application in biomedical research has been currently one of the most fascinating themes. For the past few years, scientists have made significant contributions to deriving organoids representing the whole brain and specific brain regions. Coupled with somatic cell reprogramming and CRISPR/Cas9 editing, the organoid technologies were applied for disease modeling and drug screening. The methods to develop organoids further improved for rapid and efficient generation of cerebral organoids. Additionally, refining the methods to develop the regionally specified brain organoids enabled the investigation of development and interaction of the specific brain regions. Recent studies started resolving the issue in the lack of non-neuroectodermal cells in brain organoids, including vascular endothelial cells and microglia, which play fundamental roles in neurodevelopment and are involved in the pathophysiology of acute and chronic neural disorders. In this review, we highlight recent advances of neuronal organoid technologies, focusing on the region-specific brain organoids and complementation with endothelial cells and microglia, and discuss their potential applications to neuronal diseases.

Research field(s)
Health Sciences, Clinical Medicine, Immunology