Insight
is our reward

Publications in Frontiers in Aging Neuroscience by NOMIS researchers

NOMIS Researcher(s)

May 13, 2021

Objectives: In recent years several 18F-labeled amyloid PET (Aβ-PET) tracers have been developed and have obtained clinical approval. There is evidence that Aβ-PET perfusion can provide surrogate information about neuronal injury in neurodegenerative diseases when compared to conventional blood flow and glucose metabolism assessment. However, this paradigm has not yet been tested in neurodegenerative disorders with cortical and subcortical affection. Therefore, we investigated the performance of early acquisition 18F-flutemetamol Aβ-PET in comparison to 18F-fluorodeoxyglucose (FDG)-PET in corticobasal syndrome (CBS). Methods: Subjects with clinically possible or probable CBS were recruited within the prospective Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer’s Disease (ActiGliA) observational study and all CBS cases with an available FDG-PET prior to Aβ-PET were selected. Aβ-PET was acquired 0–10 min p.i. (early-phase) and 90–110 min p.i. (late-phase) whereas FDG-PET was recorded statically from 30 to 50 min p.i. Semiquantitative regional values and asymmetry indices (AI) were compared between early-phase Aβ-PET and FDG-PET. Visual assessments of hypoperfusion and hypometabolism were compared between both methods. Late-phase Aβ-PET was evaluated visually for assessment of Aβ-positivity. Results: Among 20 evaluated patients with CBS, 5 were Aβ-positive. Early-phase Aβ-PET and FDG-PET SUVr correlated highly in cortical (mean R = 0.86, range 0.77–0.92) and subcortical brain regions (mean R = 0.84, range 0.79–0.90). Strong asymmetry was observed in FDG-PET for the motor cortex (mean |AI| = 2.9%), the parietal cortex (mean |AI| = 2.9%), and the thalamus (mean |AI| = 5.5%), correlating well with AI of early-phase Aβ-PET (mean R = 0.87, range 0.62–0.98). Visual assessments of hypoperfusion and hypometabolism were highly congruent. Conclusion: Early-phase Aβ-PET facilitates assessment of neuronal injury in CBS for cortical and subcortical areas. Known asymmetries in CBS are captured by this method, enabling assessment of Aβ-status and neuronal injury with a single radiation exposure at a single visit.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

January 17, 2018

Progressive supranuclear palsy (PSP) is a neurodegenerative movement disorder characterized by deposition of fibrillar aggregates of 4R tau-protein in neurons and glial cells of the brain. These deposits are a key neuropathological finding, allowing a diagnosis of “definite PSP,” which is usually established post mortem. To date criteria for clinical diagnosis of PSP in vivo do not include biomarkers of tau pathology. For intervention trials, it is increasingly important to (i) establish biomarkers for an early diagnosis and (ii) to develop biomarkers that correlate with disease progression of PSP. [18F]-THK5351 is a novel PET-ligand that may afford in vivo visualization and quantification of tau-related alterations. We investigated binding characteristics of [18F]-THK5351 in patients with clinically diagnosed PSP and correlate tracer uptake with clinical findings. Eleven patients (68.4 ± 7.4 year; N = 6 female) with probable PSP according to current clinical criteria and nine healthy controls (71.7 ± 7.2 year; N = 4 female) underwent [18F]-THK5351 PET scanning. Voxel-wise statistical parametric comparison and volume-of-interest based quantification of standardized-uptake-values (SUV) were conducted using the cerebellar cortex as reference region. We correlated disease severity as measured with the help of the PSP Rating Scale (PSPRS) as well as several other clinical parameters with the individual PET findings. By voxel-wise mapping of [18F]-THK5351 uptake in the patient group we delineated typical distribution patterns that fit to known tau topology for PSP post mortem. Quantitative analysis indicated the strongest discrimination between PSP patients and healthy controls based on tracer uptake in the midbrain (+35%; p = 3.01E-7; Cohen’s d: 4.0), followed by the globus pallidus, frontal cortex, and medulla oblongata. Midbrain [18F]-THK5351 uptake correlated well with clinical severity as measured by PSPRS (R = 0.66; p = 0.026). OCT and MRI delineated PSP patients from healthy controls by use of established discrimination thresholds but only OCT did as well correlate with clinical severity (R = 0.79; p = 0.024). Regional [18F]-THK5351 binding patterns correlated well with the established post mortem distribution of lesions in PSP and with clinical severity. The contribution of possible MAO-B binding to the [18F]-THK5351 signal needs to be further evaluated, but nevertheless [18F]-THK5351 PET may still serve as valuable biomarker for diagnosis of PSP.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery