Insight
is our reward

Publications in Communications Biology by NOMIS researchers

NOMIS Researcher(s)

Published in

September 7, 2023

The receptor tyrosine kinase Mer (gene name Mertk) acts in vascular endothelial cells (ECs) to tighten the blood-brain barrier (BBB) subsequent to viral infection, but how this is achieved is poorly understood. We find that Mer controls the expression and activity of a large cohort of BBB regulators, along with endothelial nitric oxide synthase. It also controls, via an Akt-Foxo1 pathway, the expression of multiple angiogenic genes. Correspondingly, EC-specific Mertk gene inactivation resulted in perturbed vascular sprouting and a compromised BBB after induced photothrombotic stroke. Unexpectedly, stroke lesions in the brain were also reduced in the absence of EC Mer, which was linked to reduced plasma expression of fibrinogen, prothrombin, and other effectors of blood coagulation. Together, these results demonstrate that Mer is a central regulator of angiogenesis, BBB integrity, and blood coagulation in the mature vasculature. They may also account for disease severity following infection with the coronavirus SARS-CoV-2. © 2023, Springer Nature Limited.

Research field(s)
Health Sciences

NOMIS Researcher(s)

Published in

December 1, 2022

Mammalian models are essential for brain aging research. However, the long lifespan and poor amenability to genetic and pharmacological perturbations have hindered the use of mammals for dissecting aging-regulatory molecular networks and discovering new anti-aging interventions. To circumvent these limitations, we developed an ex vivo model system that faithfully mimics the aging process of the mammalian brain using cultured mouse brain slices. Genome-wide gene expression analyses showed that cultured brain slices spontaneously upregulated senescence-associated genes over time and reproduced many of the transcriptional characteristics of aged brains. Treatment with rapamycin, a classical anti-aging compound, largely abolished the time-dependent transcriptional changes in naturally aged brain slice cultures. Using this model system, we discovered that prions drastically accelerated the development of age-related molecular signatures and the pace of brain aging. We confirmed this finding in mouse models and human victims of Creutzfeldt-Jakob disease. These data establish an innovative, eminently tractable mammalian model of brain aging, and uncover a surprising acceleration of brain aging in prion diseases.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology