Insight
is our reward

Publications in Toxicology by NOMIS researchers

NOMIS Researcher(s)

Published in

May 28, 2019

IONP (iron oxide nanoparticles) commercialized for treatments of iron anemia or cancer diseases can be administered at doses exceeding 1 g per patient, indicating their bio-compatibility when they are prepared in the right conditions. Various parameters influence IONP biodistribution such as nanoparticle size, hydrophobicity/hydrophilicity, surface charge, core composition, coating properties, route of administration, quantity administered, and opsonization. IONP biodistribution trends include their capture by the reticuloendothelial system (RES), accumulation in liver and spleen, leading to nanoparticle degradation by macrophages and liver Kupffer cells, possibly followed by excretion in feces. To result in efficient tumor treatment, IONP need to reach the tumor in a sufficiently large quantity, using: (i) passive targeting, i.e. the extravasation of IONP through the blood vessel irrigating the tumor, (ii) molecular targeting achieved by a ligand bound to IONP specifically recognizing a cell receptor, and (iii) magnetic targeting in which a magnetic field gradient guides IONP towards the tumor. As a whole, targeting efficacy is relatively similar for different targeting, yielding a percentage of injected IONP in the tumor of 5.10−4% to 3%, 0.1% to 7%, and 5.10−3% to 2.6% for passive, molecular, and magnetic targeting, respectively. For the treatment of iron anemia disease, IONP are captured by the RES, and dissolved into free iron, which is then made available for the organism. For the treatment of cancer, IONP either deliver chemotherapeutic drugs to tumors, produce localized heat under the application of an alternating magnetic field or a laser, or activate in a controlled manner a sono-sensitizer following ultrasound treatment.

Research field(s)
Health Sciences, Biomedical Research, Toxicology

NOMIS Researcher(s)

Published in

December 1, 2018

Pesticide exposure is associated with increased risk of Parkinson’s disease (PD). We investigated in Egypt whether common variants in genes involved in pesticide detoxification or transport might modify the risk of PD evoked by pesticide exposure. We recruited 416 PD patients and 445 controls. Information on environmental factors was collected by questionnaire-based structured interviews. Candidate single-nucleotide polymorphisms (SNPs) in 15 pesticide-related genes were genotyped. We analyzed the influence of environmental factors and SNPs as well as the interaction of pesticide exposure and SNPs on the risk of PD. The risk of PD was reduced by coffee consumption [OR = 0.63, 95% CI: 0.43–0.90, P = 0.013] and increased by pesticide exposure [OR = 7.09, 95% CI: 1.12–44.01, P = 0.036]. The SNP rs1126680 in the butyrylcholinesterase gene BCHE reduced the risk of PD irrespective of pesticide exposure [OR = 0.38, 95% CI: 0.20–0.70, P = 0.002]. The SNP rs1803274, defining K-variant BCHE, interacted significantly with pesticide exposure (P = 0.007) and increased the risk of PD only in pesticide-exposed individuals [OR = 2.49, 95% CI: 1.50–4.19, P = 0.0005]. The K-variant BCHE reduces serum activity of butyrylcholinesterase, a known bioscavenger for pesticides. Individuals with K-variant BCHE appear to have an increased risk for PD when exposed to pesticides.

Research field(s)
Health Sciences, Biomedical Research, Toxicology