Insight
is our reward

Publications in Conservation Biology by NOMIS researchers

NOMIS Researcher(s)

Published in

April 8, 2025

Glacier-fed streams (GFSs) are harsh environments hosting unique, highly specialized communities. Interestingly, glaciers and their GFSs are also present in Earth’s tropical regions, where environmental characteristics contrast with GFS conditions elsewhere. Yet, despite the unique and isolated nature of tropical GFSs, little is known about their inhabitants, even though they may disappear later this century with ongoing climate change. Here, we examined diatom communities from one of the last tropical African GFSs in the Rwenzori Mountains, Uganda, to characterize the composition and diversity of this unique system. Six sediment-associated biofilm samples were collected from two reaches of a stream draining the Mt. Stanley Glacier, and the resident diatom communities were studied morphologically using light and scanning electron microscopy, as well as through the sequencing of amplicons from extracted DNA (18S and rbcL). In general, morphological results agree well with barcoding results, but each individually provides irreplaceable insights. In total, we identify 24 morphotypes utilizing light microscopy, 101 diatom Amplicon Sequence Variants (ASVs) using 18S sequences, and 65 ASVs with rbcL. Across approaches, common genera include Achnanthidium, Psammothidium, Neidium, Cymbopleura, Eunotia, and Pinnularia. However, only about half of the diversity could be assigned to the species level across methodologies, including several of the most common taxa, indicating a high level of uniqueness. Accordingly, one of the most common taxa encountered is described here as a new species, Neidium rwenzoriense sp. nov. Our results emphasize the Rwenzori Mountains as a global hotspot for endemism, and the novelty of disappearing tropical GFSs as diatom habitats.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

March 24, 2025

As glaciers begin to disappear, technological fixes to slow or halt ice melt are emerging. But regulations are urgently required before these fixes are used widely.

Research field(s)
Conservation Biology, Environmental Sciences

NOMIS Researcher(s)

Published in

February 1, 2025

The shrinkage of glaciers and the vanishing of glacier-fed streams (GFSs) are emblematic of climate change. However, forecasts of how GFS microbiome structure and function will change under projected climate change scenarios are lacking. Combining 2,333 prokaryotic metagenome-assembled genomes with climatic, glaciological, and environmental data collected by the Vanishing Glaciers project from 164 GFSs draining Earth’s major mountain ranges, we here predict the future of the GFS microbiome until the end of the century under various climate change scenarios. Our model framework is rooted in a space-for-time substitution design and leverages statistical learning approaches. We predict that declining environmental selection promotes primary production in GFSs, stimulating both bacterial biomass and biodiversity. Concomitantly, predictions suggest that the phylogenetic structure of the GFS microbiome will change and entire bacterial clades are at risk. Furthermore, genomic projections reveal that microbiome functions will shift, with intensified solar energy acquisition pathways, heterotrophy and algal-bacterial interactions. Altogether, we project a ‘greener’ future of the world’s GFSs accompanied by a loss of clades that have adapted to environmental harshness, with consequences for ecosystem functioning.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

January 9, 2025

The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear. Variables that were directly impacted by the physical process of timber extraction, such as soil structure, were sensitive to even moderate amounts of logging, whereas measures of biodiversity and ecosystem functioning were generally resilient to logging but more affected by conversion to oil palm plantation.

Research field(s)
Conservation Biology, Forestry, Ecology, Environmental Sciences

NOMIS Researcher(s)

September 19, 2024

Runoff from rapidly melting mountain glaciers is a dominant source of riverine organic carbon in many high-latitude and high-elevation regions. Glacier dissolved organic carbon is highly bioavailable, and its composition likely reflects internal (e.g., autotrophic production) and external (i.e., atmospheric deposition) sources. However, the balance of these sources across Earth’s glaciers is poorly understood, despite implications for the mineralization and assimilation of glacier organic carbon within recipient ecosystems. We assessed the molecular-level composition of dissolved organic matter from 136 mountain glacier outflows from 11 regions covering six continents using ultrahigh resolution 21 T mass spectrometry. We found substantial diversity in organic matter composition with coherent and predictable (80% accuracy) regional patterns. Employing stable and radiocarbon isotopic analyses, we demonstrate that these patterns are inherently linked to atmospheric deposition and in situ production. In remote regions like Greenland and New Zealand, the glacier organic matter pool appears to be dominated by in situ production. However, downwind of industrial centers (e.g., Alaska and Nepal), fossil fuel combustion byproducts likely underpin organic matter composition, resulting in older and more aromatic material being exported downstream. These findings highlight that the glacier carbon cycle is spatially distinct, with ramifications for predicting the dynamics and fate of glacier organic carbon concurrent with continued retreat and anthropogenic perturbation.

Research field(s)
Conservation Biology, Biology

NOMIS Researcher(s)

Published in

September 16, 2024

The myriad interactions among individual plants, animals, microbes and their abiotic environment generate emergent phenomena that will determine the future of life on Earth. Here, we argue that holistic ecosystem models – incorporating key biological domains and feedbacks between biotic and abiotic processes and capable of predicting emergent phenomena – are required if we are to understand the functioning of complex, terrestrial ecosystems in a rapidly changing planet. We argue that holistic ecosystem models will provide a framework for integrating the many approaches used to study ecosystems, including biodiversity science, population and community ecology, soil science, biogeochemistry, hydrology and climate science. Holistic models will provide new insights into the nature and importance of feedbacks that cut across scales of space and time, and that connect ecosystem domains such as microbes with animals or above with below ground. They will allow us to critically examine the origins and maintenance of ecosystem stability, resilience and sustainability through the lens of systems theory, and provide a much-needed boost for conservation and the management of natural environments. We outline our approach to developing a holistic ecosystem model – the Virtual Ecosystem – and argue that while the construction of such complex models is obviously ambitious, it is both feasible and necessary.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

August 8, 2024

New digital and sensor technology provides a huge opportunity to revolutionise conservation, but we lack a plan for deploying the technologies effectively. I argue that environmental research should be concentrated at a small number of ‘super-sites’ and that the concentrated knowledge from super-sites should be used to develop holistic ecosystem models. These, in turn, should be morphed into digital twin ecosystems by live connecting them with automated environmental monitoring programmes. Data-driven simulations can then help select pathways to achieve locally determined conservation goals, and digital twins could revise and adapt those decisions in real-time. This technology-heavy vision for ‘smart conservation’ provides a map toward a future defined by more flexible, more responsive, and more efficient management of natural environments.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

July 17, 2024

Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.

Research field(s)
Conservation Biology, Forestry, Ecology, Environmental Sciences