Insight
is our reward

Publications in Biology by NOMIS researchers

NOMIS Researcher(s)

December 1, 2020

Narratives shape human understanding and underscore policy, practice and action. From individuals to multilateral institutions, humans act based on collective stories. As such, narratives have important implications for revisiting biodiversity. There have been growing calls for a ‘new narrative’ to underpin efforts to address biodiversity decline that, for example, foreground optimism, a more people-centred narrative or technological advances. This review presents some of the main contemporary narratives from within the biodiversity space to reflect on their underpinning categories, myths and causal assumptions. It begins by reviewing various interpretations of narrative, which range from critical views where narrative is a heuristic for understanding structures of domination, to advocacy approaches where it is a tool for reimagining ontologies and transitioning to sustainable futures. The work reveals how the conservation space is flush with narratives. As such, efforts to search for a ‘new narrative’ for conservation can be usefully informed by social science scholarship on narratives and related constructs and should reflect critically on the power of narrative to entrench old ways of thought and practice and, alternatively, make space for new ones. Importantly, the transformative potential of narrative may not lie in superficial changes in messaging, but in using narrative to bring multiple ways of knowing into productive dialogue to revisit biodiversity and foster critical reflection.

Research field(s)
Natural Sciences, Biology, Ecology

NOMIS Researcher(s)

Published in

October 27, 2020

Glacier-fed streams (GFS) are harsh ecosystems dominated by microbial life organized in benthic biofilms, yet the biodiversity and ecosystem functions provided by these communities remain under-appreciated. To better understand the microbial processes and communities contributing to GFS ecosystems, it is necessary to leverage high throughput sequencing. Low biomass and high inorganic particle load in GFS sediment samples may affect nucleic acid extraction efficiency using extraction methods tailored to other extreme environments such as deep-sea sediments. Here, we benchmarked the utility and efficacy of four extraction protocols, including an up-scaled phenolchloroform protocol. We found that established protocols for comparable sample types consistently failed to yield sufficient high-quality DNA, delineating the extreme character of GFS. The methods differed in the success of downstream applications such as library preparation and sequencing. An adapted phenol-chloroform-based extraction method resulted in higher yields and better recovered the expected taxonomic profile and abundance of reconstructed genomes when compared to commercially-available methods. Affordable and straight-forward, this method consistently recapitulated the abundance and genomes of a mock community, including eukaryotes. Moreover, by increasing the amount of input sediment, the protocol is readily adjustable to the microbial load of the processed samples without compromising protocol efficiency. Our study provides a first systematic and extensive analysis of the different options for extraction of nucleic acids from glacier-fed streams for high-throughput sequencing applications, which may be applied to other extreme environments.

Research field(s)
Natural Sciences, Biology, Ecology

NOMIS Researcher(s)

August 6, 2020

In order to inform decision making and policy, research to address sustainability challenges requires cross-disciplinary approaches that are co-created with a wide and inclusive diversity of disciplines and stakeholders. As the UN Decade of Ocean Science for Sustainable Development approaches, it is therefore timely to take stock of the global range of cross-disciplinary questions to inform the development of policies to restore and sustain ocean health. We synthesized questions from major science and policy horizon scanning exercises, identifying 89 questions with relevance for ocean policy and governance. We then scanned the broad ocean science literature to examine issues potentially missed in the horizon scans and supplemented the horizon scan outcome with 11 additional questions. This resulted in an unprioritized list of 100 general questions that would require a cross-disciplinary approach to inform policy. The questions fell into broad categories including: coastal and marine environmental change, managing ocean activities, governance for sustainable oceans, ocean value, and technological and socio-economic innovation. Each question can be customized by ecosystem, region, scale, and socio-political context, and is intended to inspire discussions of salient cross-disciplinary research directions to direct scientific research that will inform policies. Governance and management responses to these questions will best be informed by drawing upon a diversity of natural and social sciences, local and traditional knowledge, and engagement of different sectors and stakeholders.

Research field(s)
Natural Sciences, Biology, Marine Biology & Hydrobiology

NOMIS Researcher(s)

Published in

June 19, 2020

Plants emit an extraordinary diversity of chemicals that provide information about their identity and mediate their interactions with insects. However, most studies of this have focused on a few model species in controlled environments, limiting our capacity to understand plant-insect chemical communication in ecological communities. Here, by integrating information theory with ecological and evolutionary theories, we show that a stable information structure of plant volatile organic compounds (VOCs) can emerge from a conflicting information process between plants and herbivores. We corroborate this information “arms race” theory with field data recording plant-VOC associations and plant-herbivore interactions in a tropical dry forest. We reveal that plant VOC redundancy and herbivore specialization can be explained by a conflicting information transfer. Information-based communication approaches can increase our understanding of species interactions across trophic levels.

Research field(s)
Natural Sciences, Biology, Ecology

NOMIS Researcher(s)

May 1, 2020

Mountains are facing growing environmental, social, and economic challenges. Accordingly, effective policies and management approaches are needed to safeguard their inhabitants, their ecosystems, their biodiversity, and the livelihoods they support. The formulation and implementation of such policies and approaches requires a thorough understanding of, and extensive knowledge about, the interactions between nature and people particular to mountain social-ecological systems. Here, we applied the conceptual framework of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to assess and compare the contents of 631 abstracts on the interactions among biodiversity, ecosystem services, human wellbeing, and drivers of change, and formulate a set of research recommendations. Our comparative assessment of literature pertained to the Andes, the East African mountains, the European Alps, and the Hindu Kush Himalaya. It revealed interesting differences between mountain systems, in particular in the relative importance given in the literature to individual drivers of change and to the ecosystem services delivered along elevational gradients. Based on our analysis and with reference to alternative conceptual frameworks of mountain social-ecological systems, we propose future research directions and options. In particular, we recommend improving biodiversity information, generating spatially explicit knowledge on ecosystem services, integrating knowledge and action along elevational gradients, generating knowledge on interacting effects of global change drivers, delivering knowledge that is relevant for transformative action toward sustainable mountain development, and using comprehensive concepts and codesigned approaches to effectively address knowledge gaps.

Research field(s)
Natural Sciences, Biology, Ecology

NOMIS Researcher(s)

It has recently been proposed that a key motivation for joining groups is the protection from the negative consequences of undesirable outcomes. To test this claim, we investigated how experienced outcomes triggering loss and regret impacted people’s tendency to decide alone or join a group, and how decisions differed when voluntarily made alone versus in group. Replicated across two experiments, participants (n = 125 and n = 496) selected whether to play alone or contribute their vote to a group decision. Next, they chose between two lotteries with different probabilities of winning and losing. The higher the negative outcome, the more participants switched from deciding alone to with others. When joining a group to choose the lottery, choices were less driven by outcome and regret anticipation. Moreover, negative outcomes experienced alone, not part of a group vote, led to worse subsequent choices than positive outcomes. These results suggest that the protective shield of the collective reduces the influence of negative emotions that may help individuals re-evaluate past choices.

Research field(s)
Natural Sciences, Biology, Evolutionary Biology

NOMIS Researcher(s)

Published in

January 1, 2020

The water-energy-food nexus concept is criticized as not yet fit for deeply integrated and contested governance agendas. One problem is how to achieve equitable risk governance and management where there is low consensus on priorities, poor inclusion and coordination of risk assessment procedures, and a weak emphasis placed on cross-scale and sectoral interactions over time. Participatory system dynamics modeling processes and analyses are promising approaches for such challenges but are currently underutilized in nexus research and policy. This paper shares our experience implementing one such analysis in the Mekong river basin, a paradigmatic example for international nexus research. Our transdisciplinary research design combined participatory causal loop diagramming processes, scenario modeling, and a new resilience analysis method to identify and test anticipated water-energy-food risks in Kratie and Stung Treng provinces in northeastern Cambodia. Our process generated new understanding of potential cross-sectoral and cross-level risks from major hydropower development in the region. The results showed expected trade-offs between national level infrastructure programs and local level food security, but also some new insights into the effects local population increases may have on local food production and consumption even before hydropower developments are built. The analysis shows the benefit of evaluating risks in the nexus at different system levels and over time because of how system dynamics and inflection points are taken into account. Additionally, our case illustrates the contribution participatory system-thinking processes can make to risk assessment procedures for complex systems transitions. We originally anticipated that any new capacity reported by partners and participants would come from our modeling results produced at the end of the process. However, participants in the modeling procedures also found the experience powerful the information sharing, rapid risk assessment, and personal learning it enabled. A lesson from our experience reinforces a message from the transdisciplinary research field that has not yet been absorbed into the nexus research and policy field wholeheartedly: we do not have to wait for perfect data and incontestable results before making a positive contribution to anticipating and responding to risks that emerge from nexus relations if we apply participatory and systems-thinking informed approaches.

Research field(s)
Natural Sciences, Biology, Ecology