Insight
is our reward

Publications in Focal Adhesions by NOMIS researchers

NOMIS Researcher(s)

Published in

July 1, 2022

Cell migration in confining physiological environments relies on the concerted dynamics of several cellular components, including protrusions, adhesions with the environment, and the cell nucleus. However, it remains poorly understood how the dynamic interplay of these components and the cell polarity determine the emergent migration behavior at the cellular scale. Here, we combine data-driven inference with a mechanistic bottom-up approach to develop a model for protrusion and polarity dynamics in confined cell migration, revealing how the cellular dynamics adapt to confining geometries. Specifically, we use experimental data of joint protrusion-nucleus migration trajectories of cells on confining micropatterns to systematically determine a mechanistic model linking the stochastic dynamics of cell polarity, protrusions, and nucleus. This model indicates that the cellular dynamics adapt to confining constrictions through a switch in the polarity dynamics from a negative to a positive self-reinforcing feedback loop. Our model further reveals how this feedback loop leads to stereotypical cycles of protrusion-nucleus dynamics that drive the migration of the cell through constrictions. These cycles are disrupted upon perturbation of cytoskeletal components, indicating that the positive feedback is controlled by cellular migration mechanisms. Our data-driven theoretical approach therefore identifies polarity feedback adaptation as a key mechanism in confined cell migration.

Research field(s)
Natural Sciences, Physics & Astronomy, General Physics

NOMIS Researcher(s)

Published in

January 4, 2022

Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.

Research field(s)
Health Sciences, Biomedical Research, Biophysics