Insight
is our reward

Publications in Eriodictyol by NOMIS researchers

NOMIS Researcher(s)

Published in

February 15, 2021

Geroprotectors are compounds that slow the biological aging process in model organisms and may therefore extend healthy lifespan in humans. It is hypothesized that they do so by preserving the more youthful function of multiple organ systems. However, this hypothesis has rarely been tested in any organisms besides C. elegans and D. melanogaster. To determine if two life-extending compounds for Drosophila maintain a more youthful phenotype in old mice, we asked if they had anti-aging effects in both the brain and kidney. We utilized rapidly aging senescence-accelerated SAMP8 mice to investigate age-associated protein level alterations in these organs. The test compounds were two cognition-enhancing Alzheimer’s disease drug candidates, J147 and CMS121. Mice were fed the compounds in the last quadrant of their lifespan, when they have cognitive deficits and are beginning to develop CKD. Both compounds improved physiological markers for brain and kidney function. However, these two organs had distinct, tissue-specific protein level alterations that occurred with age, but in both cases, drug treatments restored a more youthful level. These data show that geroprotective AD drug candidates J147 and CMS121 prevent age-associated disease in both brain and kidney, and that their apparent mode of action in each tissue is distinct.

Research field(s)
Health Sciences, Clinical Medicine, Geriatrics

NOMIS Researcher(s)

Published in

April 1, 2018

Aging is a major driving force underlying dementia, such as that caused by Alzheimer’s disease (AD). While the idea of targeting aging as a therapeutic strategy is not new, it remains unclear how closely aging and age-associated diseases are coupled at the molecular level. Here, we discover a novel molecular link between aging and dementia through the identification of the molecular target for the AD drug candidate J147. J147 was developed using a series of phenotypic screening assays mimicking disease toxicities associated with the aging brain. We have previously demonstrated the therapeutic efficacy of J147 in several mouse models of AD. Here, we identify the mitochondrial α-F 1 -ATP synthase (ATP5A) as a target for J147. By targeting ATP synthase, J147 causes an increase in intracellular calcium leading to sustained calcium/calmodulin-dependent protein kinase kinase β (CAMKK2)-dependent activation of the AMPK/mTOR pathway, a canonical longevity mechanism. Accordingly, modulation of mitochondrial processes by J147 prevents age-associated drift of the hippocampal transcriptome and plasma metabolome in mice and extends lifespan in drosophila. Our results link aging and age-associated dementia through ATP synthase, a molecular drug target that can potentially be exploited for the suppression of both. These findings demonstrate that novel screens for new AD drug candidates identify compounds that act on established aging pathways, suggesting an unexpectedly close molecular relationship between the two.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

Alzheimer’s disease (AD) is rarely addressed in the context of aging even though there is an overlap in pathology. We previously used a phenotypic screening platform based on old age-associated brain toxicities to identify the flavonol fisetin as a potential therapeutic for AD and other age-related neurodegenerative diseases. Based on earlier results with fisetin in transgenic AD mice, we hypothesized that fisetin would be effective against brain aging and cognitive dysfunction in rapidly aging senescence-accelerated prone 8 (SAMP8) mice, a model for sporadic AD and dementia. An integrative approach was used to correlate protein expression and metabolite levels in the brain with cognition. It was found that fisetin reduced cognitive deficits in old SAMP8 mice while restoring multiple markers associated with impaired synaptic function, stress, and inflammation. These results provide further evidence for the potential benefits of fisetin for the treatment of age-related neurodegenerative diseases.

Research field(s)
Health Sciences, Public Health & Health Services, Gerontology