Insight
is our reward

Publications in Bacterial Proteins by NOMIS researchers

NOMIS Researcher(s)

Published in

December 1, 2022

Multicellular organisms require controlled intercellular communication for their survival. Strains of the filamentous cyanobacterium Nostoc regulate cell–cell communication between sister cells via a conformational change in septal junctions. These multi-protein cell junctions consist of a septum spanning tube with a membrane-embedded plug at both ends, and a cap covering the plug on the cytoplasmic side. The identities of septal junction components are unknown, with exception of the protein FraD. Here, we identify and characterize a FraD-interacting protein, SepN, as the second component of septal junctions in Nostoc. We use cryo-electron tomography of cryo-focused ion beam-thinned cyanobacterial filaments to show that septal junctions in a sepN mutant lack a plug module and display an aberrant cap. The sepN mutant exhibits highly reduced cell–cell communication rates, as shown by fluorescence recovery after photobleaching experiments. Furthermore, the mutant is unable to gate molecule exchange through septal junctions and displays reduced filament survival after stress. Our data demonstrate the importance of controlling molecular diffusion between cells to ensure the survival of a multicellular organism.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

March 1, 2022

Contractile injection systems (CISs) are phage tail-like nanomachines, mediating bacterial cell–cell interactions as either type VI secretion systems (T6SSs) or extracellular CISs (eCISs). Bioinformatic studies uncovered a phylogenetic group of hundreds of putative CIS gene clusters that are highly diverse and widespread; however, only four systems have been characterized. Here we studied a putative CIS gene cluster in the marine bacterium Algoriphagus machipongonensis. Using an integrative approach, we show that the system is compatible with an eCIS mode of action. Our cryo-electron microscopy structure revealed several features that differ from those seen in other CISs: a ‘cap adaptor’ located at the distal end, a ‘plug’ exposed to the tube lumen, and a ‘cage’ formed by massive extensions of the baseplate. These elements are conserved in other CISs, and our genetic tools identified that they are required for assembly, cargo loading and function. Furthermore, our atomic model highlights specific evolutionary hotspots and will serve as a framework for understanding and re−engineering CISs.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

March 1, 2022

Contractile injection systems (CISs) mediate cell–cell interactions by phage tail-like structures, using two distinct modes of action: extracellular CISs are released into the medium, while type 6 secretion systems (T6SSs) are attached to the cytoplasmic membrane and function upon cell–cell contact. Here, we characterized a CIS in the multicellular cyanobacterium Anabaena, with features distinct from extracellular CISs and T6SSs. Cryo-electron tomography of focused ion beam-milled cells revealed that CISs were anchored in thylakoid membrane stacks, facing the cell periphery. Single particle cryo-electron microscopy showed that this unique in situ localization was mediated by extensions of tail fibre and baseplate components. On stress, cyanobacteria induced the formation of ghost cells, presenting thylakoid-anchored CISs to the environment. Functional assays suggest that these CISs may mediate ghost cell formation and/or interactions of ghost cells with other organisms. Collectively, these data provide a framework for understanding the evolutionary re-engineering of CISs and potential roles of these CISs in cyanobacterial programmed cell death.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

Published in

December 1, 2020

Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.

Research field(s)
Health Sciences, Biomedical Research, Microbiology