Insight
is our reward

Publications in Cell by NOMIS researchers

NOMIS Researcher(s)

Published in

November 30, 2017

Internal states of the brain profoundly influence behavior. Fluctuating states such as alertness can be governed by neuromodulation, but the underlying mechanisms and cell types involved are not fully understood. We developed a method to globally screen for cell types involved in behavior by integrating brain-wide activity imaging with high-content molecular phenotyping and volume registration at cellular resolution. We used this method (MultiMAP) to record from 22 neuromodulatory cell types in behaving zebrafish during a reaction-time task that reports alertness. We identified multiple monoaminergic, cholinergic, and peptidergic cell types linked to alertness and found that activity in these cell types was mutually correlated during heightened alertness. We next recorded from and controlled homologous neuromodulatory cells in mice; alertness-related cell-type dynamics exhibited striking evolutionary conservation and modulated behavior similarly. These experiments establish a method for unbiased discovery of cellular elements underlying behavior and reveal an evolutionarily conserved set of diverse neuromodulatory systems that collectively govern internal state. Registration of brain-wide activity measurements with multiple molecular markers at cellular resolution uncovers multiple diverse neuromodulatory pathways linked to brain state.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

September 8, 2016

The reprioritization of feeding motivations during disease is proposed to optimize host defense strategies against infection. Now, Wang et al. identify that sickness-induced anorexia differentially shapes the metabolic requirements of cellular stress adaptations, leading to opposite impact on disease tolerance upon bacterial versus viral infections.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

June 2, 2016

Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that, in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

August 14, 2014

The homeostasis of multicellular organisms requires terminally differentiated cells to preserve their lineage specificity. However, it is unclear whether mechanisms exist to actively protect cell identity in response to environmental cues that confer functional plasticity. Regulatory T (Treg) cells, specified by the transcription factor Foxp3, are indispensable for immune system homeostasis. Here, we report that conserved noncoding sequence 2 (CNS2), a CpG-rich Foxp3 intronic cis-element specifically demethylated in mature Tregs, helps maintain immune homeostasis and limit autoimmune disease development by protecting Treg identity in response to signals that shape mature Treg functions and drive their initial differentiation. In activated Tregs, CNS2 helps protect Foxp3 expression from destabilizing cytokine conditions by sensing TCR/NFAT activation, which facilitates the interaction between CNS2 and Foxp3 promoter. Thus, epigenetically marked cis-elements can protect cell identity by sensing key environmental cues central to both cell identity formation and functional plasticity without interfering with initial cell differentiation. © 2014 Elsevier Inc.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology