Insight
is our reward

NOMIS Insights

Research is the vital expression of humankind’s most important qualities: curiosity and imagination.

Explorers, inventors, pioneers—dedicated researchers on the frontiers of science and the humanities.

Insight, when it comes, changes everything.

Publications

The NOMIS community of researchers and partners is instrumental in driving interdisciplinary collaboration, generating insights and ultimately advancing our understanding of the world. A key component of these efforts is knowledge sharing. Comprising a unique offering of engaging scientific lectures, insightful films about our awardees’ research, and a comprehensive publication database, NOMIS Insights are designed to facilitate the sharing of knowledge. They showcase the groundbreaking findings and innovative perspectives born from NOMIS-supported research endeavors, embodying our dedication to enabling scientific progress.

Our NOMIS Insight database provides a comprehensive source of all publications resulting from NOMIS-supported research projects.

NOMIS Researcher(s)

Published in

April 8, 2025

Glacier-fed streams (GFSs) are harsh environments hosting unique, highly specialized communities. Interestingly, glaciers and their GFSs are also present in Earth’s tropical regions, where environmental characteristics contrast with GFS conditions elsewhere. Yet, despite the unique and isolated nature of tropical GFSs, little is known about their inhabitants, even though they may disappear later this century with ongoing climate change. Here, we examined diatom communities from one of the last tropical African GFSs in the Rwenzori Mountains, Uganda, to characterize the composition and diversity of this unique system. Six sediment-associated biofilm samples were collected from two reaches of a stream draining the Mt. Stanley Glacier, and the resident diatom communities were studied morphologically using light and scanning electron microscopy, as well as through the sequencing of amplicons from extracted DNA (18S and rbcL). In general, morphological results agree well with barcoding results, but each individually provides irreplaceable insights. In total, we identify 24 morphotypes utilizing light microscopy, 101 diatom Amplicon Sequence Variants (ASVs) using 18S sequences, and 65 ASVs with rbcL. Across approaches, common genera include AchnanthidiumPsammothidiumNeidiumCymbopleuraEunotia, and Pinnularia. However, only about half of the diversity could be assigned to the species level across methodologies, including several of the most common taxa, indicating a high level of uniqueness. Accordingly, one of the most common taxa encountered is described here as a new species, Neidium rwenzoriense sp. nov. Our results emphasize the Rwenzori Mountains as a global hotspot for endemism, and the novelty of disappearing tropical GFSs as diatom habitats.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

We find evidence of belief in belief—intuitive preferences for religious belief over atheism, even among atheist participants—across eight comparatively secular countries. Religion is a cross-cultural human universal, yet explicit markers of religiosity have rapidly waned in large parts of the world in recent decades. We explored whether intuitive religious influence lingers, even among nonbelievers in largely secular societies. We adapted a classic experimental philosophy task to test for this intuitive belief in belief among people in eight comparatively nonreligious countries: Canada, China, Czechia, Japan, the Netherlands, Sweden, the United Kingdom, and Vietnam (total N = 3,804). Our analyses revealed strong evidence that 1) people intuitively favor religious belief over atheism and that 2) this pattern was not moderated by participants’ own self-reported atheism. Indeed, 3) even atheists in relatively secular societies intuitively prefer belief to atheism. These inferences were robust across different analytic strategies and across other measures of individual differences in religiosity and religious instruction. Although explicit religious belief has rapidly declined in these countries, it is possible that belief in belief may still persist. These results speak to the complex psychological and cultural dynamics of secularization.

Research field(s)
Philosophy & Theology, Psychology & Cognitive Sciences

NOMIS Researcher(s)

Published in

March 24, 2025

As glaciers begin to disappear, technological fixes to slow or halt ice melt are emerging. But regulations are urgently required before these fixes are used widely.

Research field(s)
Conservation Biology, Environmental Sciences

NOMIS Researcher(s)

Published in

March 21, 2025
Microtubules are a hallmark of eukaryotes. Archaeal and bacterial homologs of tubulins typically form homopolymers and non-tubular superstructures. The origin of heterodimeric tubulins assembling into microtubules remains unclear.
Here, we report the discovery of microtubule-forming tubulins in Asgard archaea, the closest known relatives of eukaryotes. These Asgard tubulins (AtubA/B) are closely related to eukaryotic α/β-tubulins and the enigmatic bacterial tubulins BtubA/B. Proteomics of Candidatus Lokiarchaeum ossiferum showed that AtubA/B were highly expressed. Cryoelectron microscopy structures demonstrate that AtubA/B form eukaryote-like heterodimers, which assembled into 5-protofilament bona fide microtubules in vitro. The additional paralog AtubB2 lacks a nucleotide-binding site and competitively displaced AtubB. These AtubA/B2 heterodimers polymerized into 7-protofilament non-canonical microtubules. In a sub-population of Ca. Lokiarchaeum ossiferum cells, cryo-tomography revealed tubular structures, while expansion microscopy identified AtubA/B cytoskeletal assemblies.
Our findings suggest a pre-eukaryotic origin of microtubules and provide a framework for understanding the fundamental principles of microtubule assembly.

Research field(s)
Molecular Biology, Evolutionary Biology, Microbiology

NOMIS Researcher(s)

Purpose

Sepsis is a leading cause of pediatric morbidity and mortality worldwide. Current guidelines recommend fluid bolus administration of 40–60 mL/kg as part of initial resuscitation, despite limited evidence and concerns about potential harm from high fluid volumes. The ANDES-CHILD pilot study hypothesizes that early initiation of inotropes is feasible and reduces fluid use compared to standard resuscitation.

Methods

Multicenter open label randomized controlled pilot trial conducted in three Pediatric Emergency Departments in Latin America. Children aged 28 days to 18 years with presumed septic shock will be randomized in a 1:1 ratio to receive either early adrenaline infusion after 20 mL/kg fluid bolus versus standard resuscitation with 40–60 mL/kg fluid bolus prior to initiating inotropes. The primary outcome is feasibility, with survival free of organ support censored at 28 days as the exploratory primary clinical outcome. The study will enroll 40 patients, representing approximately 10% of a full trial, with follow-up at 28 days. Baseline characteristics, adverse events and protocol violations will be summarized descriptively. Outcomes will be analyzed using difference estimates with 95% confidence intervals. An intention-to-treat approach will be used for statistical analysis.

Discussion

This pragmatic pilot study will generate essential data to evaluate the feasibility and guide the design of a full trial aimed to assessing the benefits of early inotrope use in pediatric septic shock. The study was registered on ClinicalTrials.gov prior to the start of recruitment (NCT06478797). Recruitment started on July 18, 2024.

Research field(s)
Pediatrics

Published in

March 8, 2025

Cell migration is a fundamental process during embryonic development. Most studies in vivo have focused on the migration of cells using the extracellular matrix (ECM) as their substrate for migration. In contrast, much less is known about how cells migrate on other cells, as found in early embryos when the ECM has not yet formed. Here, we show that lateral mesendoderm (LME) cells in the early zebrafish gastrula use the ectoderm as their substrate for migration. We show that the lateral ectoderm is permissive for the animal-pole-directed migration of LME cells, while the ectoderm at the animal pole halts it. These differences in permissiveness depend on the lateral ectoderm being more cohesive than the animal ectoderm, a property controlled by bone morphogenetic protein (BMP) signaling within the ectoderm. Collectively, these findings identify ectoderm tissue cohesion as one critical factor in regulating LME migration during zebrafish gastrulation.

Research field(s)
Molecular Biology, Biophysics

NOMIS Researcher(s)

Published in

March 1, 2025

High kinetic inductance superconductors are gaining increasing interest for the realisation of qubits, amplifiers and detectors. Moreover, thanks to their high impedance, quantum buses made of such materials enable large zero-point fluctuations of the voltage, boosting the coupling rates to spin and charge qubits. However, fully exploiting the potential of disordered or granular superconductors is challenging, as their inductance and, therefore, impedance at high values are difficult to control. Here, we report a reproducible fabrication of granular aluminium resonators by developing a wireless ohmmeter, which allows in situ measurements during film deposition and, therefore, control of the kinetic inductance of granular aluminium films. Reproducible fabrication of circuits with impedances (inductances) exceeding 13 kΩ (1 nH per square) is now possible. By integrating a 7.9 kΩ resonator with a germanium double quantum dot, we demonstrate strong charge-photon coupling with a rate of gc/2π = 566 ± 2 MHz. This broadly applicable method opens the path for novel qubits and high-fidelity, long-distance two-qubit gates.

Research field(s)
Nanoscience & Nanotechnology, Quantum

NOMIS Researcher(s)

Published in

February 19, 2025

The origin of life on Earth required a supply of phosphorus (P) for the synthesis of universal biomolecules. Closed lakes may have accumulated high P concentrations on early Earth. However, it is not clear whether prebiotic P uptake in such settings would then have been sustainable. We show that large closed-basin lakes can combine high P concentrations at steady state with extremely high rates of biological productivity. Our case study is Mono Lake in California, which has close to 1 millimolar dissolved P at steady state despite extremely high rates of biological productivity, in contrast to smaller closed basins where life is scarce. Hence, large closed-basin lakes offer an environment where high rates of prebiotic P productivity can plausibly coexist with high steady-state P concentrations. Such lakes should have readily formed on the heavily cratered and volcanically active surface of early Earth.

Research field(s)
Physics & Astronomy

NOMIS Researcher(s)

Published in

February 19, 2025

Recent advances in stem cell-derived embryo models have transformed developmental biology, offering insights into embryogenesis without the constraints of natural embryos. However, variability in their development challenges research standardization. To address this, we use deep learning to enhance the reproducibility of selecting stem cell-derived embryo models. Through live imaging and AI-based models, we classify 900 mouse post-implantation stem cell-derived embryo-like structures (ETiX-embryos) into normal and abnormal categories. Our best-performing model achieves 88% accuracy at 90 h post-cell seeding and 65% accuracy at the initial cell-seeding stage, forecasting developmental trajectories. Our analysis reveals that normally developed ETiX-embryos have higher cell counts and distinct morphological features such as larger size and more compact shape. Perturbation experiments increasing initial cell numbers further supported this finding by improving normal development outcomes. This study demonstrates deep learning’s utility in improving embryo model selection and reveals critical features of ETiX-embryo self-organization, advancing consistency in this evolving field.

Research field(s)
Bioinformatics, Artificial Intelligence & Image Processing, Biophysics, Developmental Biology

NOMIS Researcher(s)

Published in

February 14, 2025

Selective serotonin reuptake inhibitors (SSRIs) are some of the most prescribed drugs in the world. While they are used for their ability to increase serotonergic signaling in the brain, SSRIs are also known to have a broad range of effects beyond the brain, including immune and metabolic effects. Recent studies have demonstrated that SSRIs are protective in animal models and humans against several infections, including sepsis and COVID-19; however, the mechanisms underlying this protection are largely unknown. Here, we mechanistically link two previously described effects of the SSRI fluoxetine in mediating protection against sepsis. We show that fluoxetine-mediated protection is independent of peripheral serotonin and instead increases levels of circulating interleukin-10 (IL-10). IL-10 is necessary for protection from sepsis-induced hypertriglyceridemia, preventing cardiac effects including impairment of glucose oxidation, ectopic lipid accumulation, ventricular stretch and possibly cardiac failure. Our work reveals a beneficial “off-target” effect of fluoxetine, and reveals a protective immunometabolic defense mechanism with therapeutic potential.

Research field(s)
Biochemistry & Molecular Biology, Immunology, Pharmacology & Pharmacy, Microbiology

NOMIS Researcher(s)

February 11, 2025

Recent advancements in superconducting circuits have enabled the experimental study of collective behavior of precisely controlled intermediate-scale ensembles of qubits. In this work, we demonstrate an atomic frequency comb formed by individual artificial atoms strongly coupled to a single resonator mode. We observe periodic microwave pulses that originate from a single coherent excitation dynamically interacting with the multiqubit ensemble. We show that this revival dynamics emerges as a consequence of the constructive and periodic rephasing of the five superconducting qubits forming the vacuum Rabi split comb. In the future, similar devices could be used as a memory with in situ tunable storage time or as an on-chip periodic pulse generator with nonclassical photon statistics.

Research field(s)
Quantum

NOMIS Researcher(s)

Published in

February 10, 2025

Sparse, single-cell labeling approaches enable high-resolution, high signal-to-noise recordings from subcellular compartments and intracellular organelles and allow precise manipulations of individual cells and local circuits while minimizing complex changes associated with global network manipulations. However, thus far, only a limited number of approaches have been developed to label single cells with unique combinations of genetically encoded indicators, target deep cortical structures or sustainably use the same chronic preparation for weeks. Here we developed a method to deliver plasmids selectively to single pyramidal neurons in the mouse dorsal hippocampus using two-photon visually guided in vivo single-cell electroporation to address these limitations. This method allows long-term plasmid expression in a controlled number of individual pyramidal neurons, facilitating subcellular resolution imaging, intracellular organelle tracking, monosynaptic input mapping, plasticity induction and targeted whole-cell patch-clamp recordings.

Research field(s)
Neuroscience, Molecular Biology

NOMIS Researcher(s)

Published in

February 1, 2025

The shrinkage of glaciers and the vanishing of glacier-fed streams (GFSs) are emblematic of climate change. However, forecasts of how GFS microbiome structure and function will change under projected climate change scenarios are lacking. Combining 2,333 prokaryotic metagenome-assembled genomes with climatic, glaciological, and environmental data collected by the Vanishing Glaciers project from 164 GFSs draining Earth’s major mountain ranges, we here predict the future of the GFS microbiome until the end of the century under various climate change scenarios. Our model framework is rooted in a space-for-time substitution design and leverages statistical learning approaches. We predict that declining environmental selection promotes primary production in GFSs, stimulating both bacterial biomass and biodiversity. Concomitantly, predictions suggest that the phylogenetic structure of the GFS microbiome will change and entire bacterial clades are at risk. Furthermore, genomic projections reveal that microbiome functions will shift, with intensified solar energy acquisition pathways, heterotrophy and algal-bacterial interactions. Altogether, we project a ‘greener’ future of the world’s GFSs accompanied by a loss of clades that have adapted to environmental harshness, with consequences for ecosystem functioning.

Research field(s)
Conservation Biology, Ecology, Environmental Sciences

NOMIS Researcher(s)

Published in

January 30, 2025

Human accelerated regions (HARs) have been implicated in human brain evolution. However, insight into the genes and pathways they control is lacking, hindering the understanding of their function. Here, we identify 2,963 conserved gene targets for 1,590 HARs and their orthologs in human and chimpanzee neural stem cells (NSCs). Conserved gene targets are enriched for neurodevelopmental functions and are overrepresented among differentially expressed genes (DEGs) identified in human NSCs (hNSCs) and chimpanzee NSCs (cNSCs) as well as in human versus non-human primate brains. Species-specific gene targets do not converge on any function and are not enriched among DEGs. HAR targets also show cell-type-specific expression in the human fetal brain, including in outer radial glia, which are linked to cortical expansion. Our findings support that HARs influence brain evolution by altering the expression of ancestral gene targets shared between human and chimpanzee rather than by gaining new targets in human and facilitate hypothesis-directed studies of HAR biology.

Research field(s)
Bioinformatics, Developmental Biology, Evolutionary Biology

NOMIS Researcher(s)

Published in

January 27, 2025

The sense of agency is the subjective feeling of control over one’s own actions and the associated outcomes. Here, we asked whether and to what extent the reasons behind our choices (operationalized by value differences, expected utility, and counterfactual option sets) drive our sense of agency. We simultaneously tested these three dimensions during a novel value-based decision-making task while recording explicit (self-reported) and implicit (brain signals) measures of agency. Our results show that choices that are more reasonable also come with a stronger sense of agency: humans report higher levels of control over the outcomes of their actions if (1) they were able to choose between different option values compared to randomly picking between options of identical value, (2) their choices maximizes utility (compared to otherwise) and yields higher than expected utility, and (3) they realize that they have not missed out on hidden opportunities. EEG results showed supporting evidence for factors (1) and (3): We found a higher P300 amplitude for picking than choosing and a higher Late-Positive Component when participants realized they had missed out on possible but hidden opportunities. Together, these results suggest that human agency is not only driven by the goal-directedness of our actions but also by their perceived rationality.

Research field(s)
Psychology & Cognitive Sciences, Behavioral Science & Comparative Psychology

NOMIS Researcher(s)

Published in

January 20, 2025

Science is crucial for evidence-based decision-making. Public trust in scientists can help decision makers act on the basis of the best available evidence, especially during crises. However, in recent years the epistemic authority of science has been challenged, causing concerns about low public trust in scientists. We interrogated these concerns with a preregistered 68-country survey of 71,922 respondents and found that in most countries, most people trust scientists and agree that scientists should engage more in society and policymaking. We found variations between and within countries, which we explain with individual- and country-level variables, including political orientation. While there is no widespread lack of trust in scientists, we cannot discount the concern that lack of trust in scientists by even a small minority may affect considerations of scientific evidence in policymaking. These findings have implications for scientists and policymakers seeking to maintain and increase trust in scientists.

Research field(s)
Sociology, Psychology & Cognitive Sciences, Social Psychology

NOMIS Researcher(s)

Published in

January 20, 2025

Science is integral to society because it can inform individual, government, corporate, and civil society decision-making on issues such as public health, new technologies or climate change. Yet, public distrust and populist sentiment challenge the relationship between science and society. To help researchers analyse the science-society nexus across different geographical and cultural contexts, we undertook a cross-sectional population survey resulting in a dataset of 71,922 participants in 68 countries. The data were collected between November 2022 and August 2023 as part of the global Many Labs study “Trust in Science and Science-Related Populism” (TISP). The questionnaire contained comprehensive measures for individuals’ trust in scientists, science-related populist attitudes, perceptions of the role of science in society, science media use and communication behaviour, attitudes to climate change and support for environmental policies, personality traits, political and religious views and demographic characteristics. Here, we describe the dataset, survey materials and psychometric properties of key variables. We encourage researchers to use this unique dataset for global comparative analyses on public perceptions of science and its role in society and policy-making.

Research field(s)
Social Sciences, Psychology & Cognitive Sciences, Social Psychology, Public Health

NOMIS Researcher(s)

Published in

January 14, 2025

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.0005 mg kg−1—far below the detection limits of conventional whole body imaging techniques. We demonstrate that intramuscularly injected LNPs carrying SARS-CoV-2 spike mRNA reach heart tissue, leading to proteome changes, suggesting immune activation and blood vessel damage. SCP-Nano generalizes to various types of nanocarriers, including liposomes, polyplexes, DNA origami and adeno-associated viruses (AAVs), revealing that an AAV2 variant transduces adipocytes throughout the body. SCP-Nano enables comprehensive three-dimensional mapping of nanocarrier distribution throughout mouse bodies with high sensitivity and should accelerate the development of precise and safe nanocarrier-based therapeutics.

Research field(s)
Nanoscience & Nanotechnology, Biomedical Engineering

NOMIS Researcher(s)

Published in

January 9, 2025

The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear. Variables that were directly impacted by the physical process of timber extraction, such as soil structure, were sensitive to even moderate amounts of logging, whereas measures of biodiversity and ecosystem functioning were generally resilient to logging but more affected by conversion to oil palm plantation.

Research field(s)
Conservation Biology, Forestry, Ecology, Environmental Sciences