Insight
is our reward

NOMIS Insights

Research is the vital expression of humankind’s most important qualities: curiosity and imagination.

Explorers, inventors, pioneers—dedicated researchers on the frontiers of science and the humanities.

Insight, when it comes, changes everything.

Publications

The NOMIS community of researchers and partners is instrumental in driving interdisciplinary collaboration, generating insights and ultimately advancing our understanding of the world. A key component of these efforts is knowledge sharing. Comprising a unique offering of engaging scientific lectures, insightful films about our awardees’ research, and a comprehensive publication database, NOMIS Insights are designed to facilitate the sharing of knowledge. They showcase the groundbreaking findings and innovative perspectives born from NOMIS-supported research endeavors, embodying our dedication to enabling scientific progress.

Our NOMIS Insight database provides a comprehensive source of all publications resulting from NOMIS-supported research projects.

NOMIS Researcher(s)

November 14, 2022

The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease (API ADAD) Trial evaluated the anti-oligomeric amyloid beta (Aβ) antibody therapy crenezumab in cognitively unimpaired members of the Colombian presenilin 1 (PSEN1) E280A kindred. We report availability, methods employed to protect confidentiality and anonymity of participants, and process for requesting and accessing baseline data. Methods: We developed mechanisms to share baseline data from the API ADAD Trial in consultation with experts and other groups sharing data from Alzheimer’s disease (AD) prevention trials, balancing the need to protect anonymity and trial integrity with making data broadly available to accelerate progress in the field. We pressure-tested deliberate and inadvertent potential threats under specific assumptions, employed a system to suppress or mask both direct and indirect identifying variables, limited and firewalled data managers, and put forth specific principles requisite to receive data. Results: Baseline demographic, PSEN1 E280A and apolipoprotein E genotypes, florbetapir and fluorodeoxyglucose positron emission tomography, magnetic resonance imaging, clinical, and cognitive data can now be requested by interested researchers. Discussion: Baseline data are publicly available; treatment data and biological samples, including baseline and treatment-related blood-based biomarker data will become available in accordance with our original trial agreement and subsequently developed Collaboration for Alzheimer’s Prevention principles. Sharing of these data will allow exploration of important questions including the differential effects of initiating an investigational AD prevention therapy both before as well as after measurable Aβ plaque deposition. © 2022 The Authors. Alzheimer’s & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer’s Association.

Research field(s)
Health Sciences

NOMIS Researcher(s)

Published in

November 3, 2022

The cellular prion protein PrPC mediates the neurotoxicity of prions and other protein aggregates through poorly understood mechanisms. Antibody-derived ligands against the globular domain of PrPC (GDL) can also initiate neurotoxicity by inducing an intramolecular R208-H140 hydrogen bond (“H-latch”) between the α2-α3 and β2-α2 loops of PrPC. Importantly, GDL that suppresses the H-latch prolong the life of prion-infected mice, suggesting that GDL toxicity and prion infections exploit convergent pathways. To define the structural underpinnings of these phenomena, we transduced 19 individual PrPC variants to PrPC-deficient cerebellar organotypic cultured slices using adenovirus-associated viral vectors (AAV). We report that GDL toxicity requires a single N-proximal cationic residue (K27 or R27) within PrPC. Alanine substitution of K27 also prevented the toxicity of PrPC mutants that induce Shmerling syndrome, a neurodegenerative disease that is suppressed by co-expression of wild-type PrPC. K27 may represent an actionable target for compounds aimed at preventing prion-related neurodegeneration. © 2022 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

November 2, 2022

In the central nervous system (CNS), microglia carry out multiple tasks related to brain development, maintenance of brain homeostasis, and function of the CNS. Recent advanced in vitro model systems allow us to perform more detailed and specific analyses of microglial functions in the CNS. The development of human pluripotent stem cells (hPSCs)-based 2D and 3D cell culture methods, particularly advancements in brain organoid models, offers a better platform to dissect microglial function in various contexts. Despite the improvement of these methods, there are still definite restrictions. Understanding their drawbacks and benefits ensures their proper use. In this primer, we review current developments regarding in vitro microglial production and characterization and their use to address fundamental questions about microglial function in healthy and diseased states, and we discuss potential future improvements with a particular emphasis on brain organoid models.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

November 1, 2022

The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries — in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

November 1, 2022

The term ‘nonsense-mediated mRNA decay’ (NMD) was initially coined to describe the translation-dependent degradation of mRNAs harboring premature termination codons (PTCs), but it is meanwhile known that NMD also targets many canonical mRNAs with numerous biological implications. The molecular mechanisms determining on which RNAs NMD ensues are only partially understood. Considering the broad range of NMD-sensitive RNAs and the variable degrees of their degradation, we highlight here the hallmarks of mammalian NMD and point out open questions. We review the links between NMD and disease by summarizing the role of NMD in cancer, neurodegeneration, and viral infections. Finally, we describe strategies to modulate NMD activity and specificity as potential therapeutic approaches for various diseases.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

November 1, 2022

Introduction: Females may have greater susceptibility to Alzheimer’s disease (AD)-pathology. We examined the effect of sex on pathology, neurodegeneration, and memory in cognitively-unimpaired Presenilin-1 (PSEN1) E280A mutation carriers and non-carriers. Methods: We analyzed baseline data from 167 mutation carriers and 75 non-carriers (ages 30 to 53) from the Alzheimer’s Prevention Initiative Autosomal Dominant AD Trial, including florbetapir- and fludeoxyglucose-PET, MRI based hippocampal volume and cognitive testing. Results: Females exhibited better delayed recall than males, controlling for age, precuneus glucose metabolism, and mutation status, although the effect was not significant among PSEN1 mutation carriers only. APOE ε4 did not modify the effect of sex on AD biomarkers and memory. Discussion: Our findings suggest that, among cognitively-unimpaired individuals at genetic risk for autosomal-dominant AD, females may have greater cognitive resilience to AD pathology and neurodegeneration than males. Further investigation of sex-specific differences in autosomal-dominant AD is key to elucidating mechanisms of AD risk and resilience.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

Published in

October 19, 2022

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

October 1, 2022

Background: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. Objective: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. Methods: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). Results: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10−6, all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). Interpretation: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

September 1, 2022

Deposits of amyloid-β (Aβ) in the brains of rodents can be analysed by invasive intravital microscopy on a submillimetre scale, or via whole-brain images from modalities lacking the resolution or molecular specificity to accurately characterize Aβ pathologies. Here we show that large-field multifocal illumination fluorescence microscopy and panoramic volumetric multispectral optoacoustic tomography can be combined to longitudinally assess Aβ deposits in transgenic mouse models of Alzheimer’s disease. We used fluorescent Aβ-targeted probes (the luminescent conjugated oligothiophene HS-169 and the oxazine-derivative AOI987) to transcranially detect Aβ deposits in the cortex of APP/PS1 and arcAβ mice with single-plaque resolution (8 μm) and across the whole brain (including the hippocampus and the thalamus, which are inaccessible by conventional intravital microscopy) at sub-150 μm resolutions. Two-photon microscopy, light-sheet microscopy and immunohistochemistry of brain-tissue sections confirmed the specificity and regional distributions of the deposits. High-resolution multiscale optical and optoacoustic imaging of Aβ deposits across the entire brain in rodents thus facilitates the in vivo study of Aβ accumulation by brain region and by animal age and strain.

Research field(s)
Applied Sciences, Enabling & Strategic Technologies, Nanoscience & Nanotechnology

NOMIS Researcher(s)

Published in

September 1, 2022

To combat infections, hosts employ a combination of antagonistic and cooperative defense strategies. The former refers to pathogen killing mediated by resistance mechanisms, while the latter refers to physiological defense mechanisms that promote host health during infection independent of pathogen killing, leading to an apparent cooperation between the host and the pathogen. Previous work has shown that Leptin, a pleiotropic hormone that plays a central role in regulating appetite and energy metabolism, is indispensable for resistance mechanisms, while a role for Leptin signaling in cooperative host-pathogen interactions remains unknown. Using a mouse model of Yersinia pseudotuberculosis (Yptb) infection, an emerging pathogen that causes fever, diarrhea, and mesenteric lymphadenitis in humans, we found that the physiological effects of chronic Leptin-signaling deficiency conferred protection from Yptb infection due to increased host-pathogen cooperation rather than greater resistance defenses. The protection against Yptb infection was independent of differences in food consumption, lipolysis, or fat mass. Instead, we found that the chronic absence of Leptin signaling protects from a shift to lipid utilization during infection that contributes to Yptb lethality. Furthermore, we found that the survival advantage conferred by Leptin deficiency was associated with increased liver and kidney damage. Our work reveals an additional level of complexity for the role of Leptin in infection defense and demonstrates that in some contexts, in addition to tolerating the pathogen, tolerating organ damage is more beneficial for survival than preventing the damage.

Research field(s)
Health Sciences, Biomedical Research, Microbiology

NOMIS Researcher(s)

September 1, 2022

Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease marked by death of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Despite extensive research, the reason for neurodegeneration is still not understood. To generate novel hypotheses of putative underlying molecular mechanisms, we used human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to perform high-throughput RNA-sequencing (RNA-Seq). An integrated bioinformatics approach was employed to identify differentially expressed genes (DEGs) and key pathways underlying these familial forms of the disease (fALS). In TDP43-ALS, we found dysregulation of transcripts encoding components of the transcriptional machinery and transcripts involved in splicing regulation were particularly affected. In contrast, less is known about the role of SOD1 in RNA metabolism in motor neurons. Here, we found that many transcripts relevant for mitochondrial function were specifically altered in SOD1-ALS, indicating that transcriptional signatures and expression patterns can vary significantly depending on the causal gene that is mutated. Surprisingly, however, we identified a clear downregulation of genes involved in protein translation in SOD1-ALS suggesting that ALS-causing SOD1 mutations shift cellular RNA abundance profiles to cause neural dysfunction. Altogether, we provided here an extensive profiling of mRNA expression in two ALS models at the cellular level, corroborating the major role of RNA metabolism and gene expression as a common pathomechanism in ALS.

Research field(s)
Natural Sciences, Physics & Astronomy, Chemical Physics

NOMIS Researcher(s)

Published in

September 1, 2022

Although prion infections cause cognitive impairment and neuronal death, transcriptional and translational profiling shows progressive derangement within glia but surprisingly little changes within neurons. Here we expressed PrPC selectively in neurons and astrocytes of mice. After prion infection, both astrocyte and neuron-restricted PrPC expression led to copious brain accumulation of PrPSc. As expected, neuron-restricted expression was associated with typical prion disease. However, mice with astrocyte-restricted PrPC expression experienced a normal life span, did not develop clinical disease, and did not show astro- or microgliosis. Besides confirming that PrPSc is innocuous to PrPC-deficient neurons, these results show that astrocyte-born PrPSc does not activate the extreme neuroinflammation that accompanies the onset of prion disease and precedes any molecular changes of neurons. This points to a nonautonomous mechanism by which prion-infected neurons instruct astrocytes and microglia to acquire a specific cellular state that, in turn, drives neural dysfunction.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

August 11, 2022

The Mesolithic in Eastern Europe was the last time that hunter-gatherer economies thrived there before the spread of agriculture in the second half of the seventh millennium BC. But the period, and the interactions between foragers and the first farmers, are poorly understood in the Carpathian Basin and surrounding areas because few sites are known, and even fewer have been excavated and published. How did site location differ between Mesolithic and Early Neolithic settlers? And where should we look for rare Mesolithic sites? Proximity analysis is seldom used for predictive modeling for hunter-gatherer sites at large scales, but in this paper, we argue that it can serve as an important starting point for prospection for rare and poorly understood sites. This study uses proximity analysis to provide quantitative landscape associations of known Mesolithic and Early Neolithic sites in the Carpathian Basin to show how Mesolithic people chose attributes of the landscape for camps, and how they differed from the farmers who later settled. We use elevation and slope, rivers, wetlands prior to the twentieth century, and the distribution of lithic raw materials foragers and farmers used for toolmaking to identify key proxies for preferred locations. We then build predictive models for the Mesolithic and Early Neolithic in the Pannonian region to highlight parts of the landscape that have relatively higher probabilities of having Mesolithic sites still undiscovered and contrast them with the settlement patterns of the first farmers in the area. We find that large parts of Pannonia conform to landforms preferred by Mesolithic foragers, but these areas have not been subject to investigation. © 2022, The Author(s).

Research field(s)
Arts & Humanities, Historical Studies, Archaeology

NOMIS Researcher(s)

August 10, 2022

Clinical trials for Alzheimer’s disease (AD) are slower to enroll study participants, take longer to complete, and are more expensive than trials in most other therapeutic areas. The recruitment and retention of a large number of qualified, diverse volunteers to participate in clinical research studies remain among the key barriers to the successful completion of AD clinical trials. An advisory panel of experts from academia, patient-advocacy organizations, philanthropy, non-profit, government, and industry convened in 2020 to assess the critical challenges facing recruitment in Alzheimer’s clinical trials and develop a set of recommendations to overcome them. This paper briefly reviews existing challenges in AD clinical research and discusses the feasibility and implications of the panel’s recommendations for actionable and inclusive solutions to accelerate the development of novel therapies for AD. © 2022 The Authors. Alzheimer’s & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer’s Association.

Research field(s)
Health Sciences, Clinical Medicine, Neurology & Neurosurgery

NOMIS Researcher(s)

August 9, 2022

Dyslexia, also known as reading disability, is defined as difficulty processing written language in individuals with normal intellectual capacity and educational opportunity. The prevalence of dyslexia is between 5 and 17%, and the heritability ranges from 44 to 75%. Genetic linkage analysis and association studies have identified several genes and regulatory elements linked to dyslexia and reading ability. However, their functions and molecular mechanisms are not well understood. Prominent among these is KIAA0319, encoded in the DYX2 locus of human chromosome 6p22. The association of KIAA0319 with reading performance has been replicated in independent studies and different languages. Rodent models suggest that kiaa0319 is involved in neuronal migration, but its role throughout the cortical development is largely unknown. In order to define the function of KIAA0319 in human cortical development, we applied the neural developmental model of a human embryonic stem cell. We knocked down KIAA0319 expression in hESCs and performed the cortical neuroectodermal differentiation. We found that neuroepithelial cell differentiation is one of the first stages of hESC differentiation that are affected by KIAA0319 knocked down could affect radial migration and thus differentiation into diverse neural populations at the cortical layers.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

August 1, 2022

In a Bayesian brain, every perceptual decision will take into account internal priors as well as new incoming evidence. A reality monitoring system—eventually providing the agent us with a subjective sense of reality avoids us them being confused about whether our experience is perceptual or imagined. Yet not all confusions we experience mean that we wonder wonder whether we may be imagining: some confused experiences feel clearly perceptual but still feel not right. What happens in such confused perceptions, and can the Bayesian brain explain this kind of confusion? In this paper, we offer a characterisation of perceptual confusion and argue that it requires our subjective sense of reality to be a composite of several subjective markers, including a categorical one that can clearly identify an experience as perceptual and connecting us to reality. Our composite account makes new predictions regarding the robustness, the non-linear development and the possible breakdowns of the sense of reality in perception.

Research field(s)
Health Sciences, Psychology & Cognitive Sciences, Experimental Psychology

NOMIS Researcher(s)

August 1, 2022

Prion infections cause conformational changes of the cellular prion protein (PrPC) and lead to progressive neurological impairment. Here we show that toxic, prion-mimetic ligands induce an intramolecular R208-H140 hydrogen bond (‘H-latch’), altering the flexibility of the α2–α3 and β2–α2 loops of PrPC. Expression of a PrP2Cys mutant mimicking the H-latch was constitutively toxic, whereas a PrPR207A mutant unable to form the H-latch conferred resistance to prion infection. High-affinity ligands that prevented H-latch induction repressed prion-related neurodegeneration in organotypic cerebellar cultures. We then selected phage-displayed ligands binding wild-type PrPC, but not PrP2Cys. These binders depopulated H-latched conformers and conferred protection against prion toxicity. Finally, brain-specific expression of an antibody rationally designed to prevent H-latch formation prolonged the life of prion-infected mice despite unhampered prion propagation, confirming that the H-latch is an important reporter of prion neurotoxicity.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology

NOMIS Researcher(s)

Published in

August 1, 2022

Experiments were conducted in zero-pressure-gradient boundary layers over a rough surface. Profiles of mean velocity and turbulence quantities were acquired using laser Doppler velocimetry at twelve streamwise locations for each of three different freestream velocities. Momentum thickness Reynolds numbers ranged from 1550 to 13,650. The roughness was stochastic with positive skewness, and the ratio of the boundary layer thickness, δ, to the root-mean-square roughness height varied from 55 to 141. The equivalent sandgrain roughness height, ks, was approximately 4 times the rms roughness height. In the outer region of the boundary layer, the mean velocity and turbulence results were found to be invariant with Reynolds number and δ, when scaled using δ and the friction velocity. The outer region quantities exhibited similarity with equivalent smooth-wall boundary layer quantities, in agreement with results from the literature. The equivalent sandgrain roughness was computed from the mean velocity results using a standard correlation, and was found to vary noticeably and inversely with δ when δ/ks was less than about 40. The possible existence of a modified correlation to account for the δ/ks dependence was discussed. Such a correlation might prove useful for extracting ks values from low δ/ks data and for predicting the effect of roughness with a known ks on boundary layers with varying δ/ks. Graphical abstract: [Figure not available: see fulltext.]

Research field(s)
Natural Sciences, Physics & Astronomy, Fluids & Plasmas

NOMIS Researcher(s)

Published in

July 30, 2022

Vaccines are a powerful and relatively safe tool to protect against a range of serious diseases. Nonetheless, a sizeable minority of people express ‘vaccination hesitancy’. Accordingly, understanding the bases of this hesitancy represents a significant public health opportunity. In the present study we sought to examine the role of Big Five personality traits and general intelligence as predictors of vaccination hesitancy across two vaccination types in a large (N = 9667) sample of UK adults drawn from the Understanding Society longitudinal household study. We found that lower levels of general intelligence were associated with COVID-19 and seasonal flu vaccination hesitancy, and lower levels of neuroticism was associated with COVID-19 vaccination hesitancy. Although the self-reported reasons for being vaccine hesitant indicated a range of factors were important to people, lower general intelligence was associated with virtually all of these reasons. In contrast, Big Five personality traits showed more nuanced patterns of association.

Research field(s)
Health Sciences, Biomedical Research, Virology

NOMIS Researcher(s)

Published in

July 29, 2022

Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.

Research field(s)
Health Sciences, Biomedical Research, Developmental Biology