Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Mapping the metagenomic diversity of the multi-kingdom glacier-fed stream microbiome

Abstract

Glacier-fed streams (GFS) feature among Earth’s most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms. A total of 2,855 bacterial MAGs were characterized by diverse strategies to exploit inorganic and organic energy sources, in part via functional redundancy and mixotrophy. We show that biofilms probably become more complex and switch from chemoautotrophy to heterotrophy as algal biomass increases in GFS owing to glacier shrinkage. Our MAG compendium sheds light on the success of microbial life in GFS and provides a resource for future research on a microbiome potentially impacted by climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prokaryotic MAGs sourced from glacier-fed streams sampled by the Vanishing Glaciers project.
Fig. 2: Regional distribution and environmental drivers of the glacier-fed stream microbiome.
Fig. 3: Functional metabolism of the prokaryotic community.
Fig. 4: Viral MAGs and their hosts.
Fig. 5: Presence of genes linked to algal–bacterial interactions.
Fig. 6: Relationships between glacier-fed stream chlorophyll a and prokaryotic community functions.

Similar content being viewed by others

Data availability

All sequencing raw data and MAGs are deposited in NCBI under bioproject PRJNA781406. The MAGs annotations are deposited in Zenodo at https://doi.org/10.5281/zenodo.13890040 (ref. 97). Source data are provided with this paper.

Code availability

The code and data used in this study to create the figures are available in GitHub at https://github.com/michoug/VanishingGlaciersRcode (ref. 98). The code for binning is also available in GitHub at https://github.com/michoug/VanishingGlacierMAGs (ref. 99).

References

  1. Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article  PubMed  Google Scholar 

  3. Wilkes, M. A. et al. Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol. 7, 841–851 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ezzat, L. et al. Global diversity and biogeography of the glacier-fed stream bacterial microbiome. Nature (in the press).

  6. Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Boix Canadell, M. et al. Regimes of primary production and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).

    Article  Google Scholar 

  8. Busi, S. B. et al. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat. Commun. 13, 2168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Busi, S. B. et al. Cross-domain interactions confer stability to benthic biofilms in proglacial streams. Front. Microbiomes https://doi.org/10.3389/frmbi.2023.1280809 (2024).

  10. Rott, E., Cantonati, M., Füreder, L. & Pfister, P. Benthic algae in high altitude streams of the Alps – a neglected component of the aquatic biota. Hydrobiologia 562, 195–216 (2006).

    Article  Google Scholar 

  11. Peter, H., Michoud, G., Busi, S. B. & Battin, T. J. The role of phages for microdiverse bacterial communities in proglacial stream biofilms. Front. Microbiomes https://doi.org/10.3389/frmbi.2023.1279550 (2024).

  12. Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ezzat, L. et al. Benthic biofilms in glacier-fed streams from Scandinavia to the Himalayas host distinct bacterial communities compared with the streamwater. Appl. Environ. Microbiol. 88, e00421–e00422 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Michoud, G. et al. Unexpected functional diversity of stream biofilms within and across proglacial floodplains despite close spatial proximity. Limnol. Oceanogr. 68, 2183–2194 (2023).

    Article  Google Scholar 

  16. Michoud, G. et al. The dark side of the moon: first insights into the microbiome structure and function of one of the last glacier-fed streams in Africa. R. Soc. Open Sci. 10, 230329 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Busi, S. B. et al. Glacier-fed stream biofilms harbor diverse resistomes and biosynthetic gene clusters. Microbiol. Spectr. 11, e04069-22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci. 17, 309–315 (2024).

    Article  CAS  Google Scholar 

  19. Royo-Llonch, M. et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 6, 1561–1574 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Garner, R. E. et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat. Microbiol. 8, 1920–1934 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 40, 1341–1348 (2022).

    Article  PubMed  Google Scholar 

  23. Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tian, C. et al. Microbial community structure and metabolic potential at the initial stage of soil development of the glacial forefields in Svalbard. Microb. Ecol. 86, 933–946 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).

    Article  Google Scholar 

  27. Tolotti, M. et al. Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: ecological implications for the future. Sci. Total Environ. 717, 137101 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Fell, S. C. et al. Fungal decomposition of river organic matter accelerated by decreasing glacier cover. Nat. Clim. Change 11, 349–353 (2021).

    Article  Google Scholar 

  29. Kohler, T. J. et al. Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function. Glob. Change Biol. 28, 3846–3859 (2022).

    Article  Google Scholar 

  30. Niedrist, G. H. & Füreder, L. When the going gets tough, the tough get going: the enigma of survival strategies in harsh glacial stream environments. Freshw. Biol. 63, 1260–1272 (2018).

    Article  Google Scholar 

  31. Longcore, J. E., Qin, S., Simmons, D. R. & James, T. Y. Quaeritorhiza haematococci is a new species of parasitic chytrid of the commercially grown alga, Haematococcus pluvialis. Mycologia 112, 606–615 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).

  34. Székely, A. J., Berga, M. & Langenheder, S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 7, 61–71 (2013).

    Article  PubMed  Google Scholar 

  35. Tian, R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alonso-Sáez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat. Rev. Microbiol. 20, 513–528 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Johnson, D. R., Goldschmidt, F., Lilja, E. E. & Ackermann, M. Metabolic specialization and the assembly of microbial communities. ISME J. 6, 1985–1991 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, Z. et al. Single-cell measurements and modelling reveal substantial organic carbon acquisition by Prochlorococcus. Nat. Microbiol. 7, 2068–2077 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & DeLong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yurkov, V. V. & Beatty, J. T. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62, 695–724 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanabe, Y., Yamaguchi, H., Yoshida, M., Kai, A. & Okazaki, Y. Characterization of a bloom-associated alphaproteobacterial lineage, ‘Candidatus Phycosocius’: insights into freshwater algal-bacterial interactions. ISME Commun. 3, 20 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ferrera, I., Sánchez, O., Kolářová, E., Koblížek, M. & Gasol, J. M. Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. ISME J. 11, 2391–2393 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reis-Mansur, M. C. P. P. et al. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Sci. Rep. 9, 9554 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Williamson, R. J., Entwistle, N. S. & Collins, D. N. Meltwater temperature in streams draining Alpine glaciers. Sci. Total Environ. 658, 777–786 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Bäumgen, M., Dutschei, T. & Bornscheuer, U. T. Marine polysaccharides: occurrence, enzymatic degradation and utilization. ChemBioChem 22, 2247–2256 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Helbert, W. Marine polysaccharide sulfatases. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00006 (2017).

  50. Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl Acad. Sci. USA 108, 14288–14293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rier, S. T., Shirvinski, J. M. & Kinek, K. C. In situ light and phosphorus manipulations reveal potential role of biofilm algae in enhancing enzyme‐mediated decomposition of organic matter in streams. Freshw. Biol. 59, 1039–1051 (2014).

    Article  CAS  Google Scholar 

  52. Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kost, C., Patil, K. R., Friedman, J., Garcia, S. L. & Ralser, M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat. Microbiol. 8, 2244–2252 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Wadham, J. L., Bottrell, S., Tranter, M. & Raiswell, R. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sci. Lett. 219, 341–355 (2004).

    Article  CAS  Google Scholar 

  57. Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8, e9973 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 17, 260 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Hickl, O., Queirós, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. Brief. Bioinform. 23, bbac431 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wu, Y.-W. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2015).

    Article  PubMed  Google Scholar 

  64. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).

  66. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Z., Huang, P., You, R., Sun, F. & Zhu, S. MetaBinner: a high-performance and stand-alone ensemble binning method to recover individual genomes from complex microbial communities. Genome Biol. 24, 1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Vollmers, J., Wiegand, S., Lenk, F. & Kaster, A.-K. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res. 50, e76 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Aroney, S. T. N. et al. CoverM: read coverage calculator for metagenomics. Zenodo https://doi.org/10.5281/zenodo.10531253 (2024).

  75. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    Article  CAS  Google Scholar 

  76. Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Karaoz, U. & Brodie, E. L. microTrait: a toolset for a trait-based representation of microbial genomes. Front. Bioinform. 2, 918853 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stam, M. et al. SulfAtlas, the sulfatase database: state of the art and new developments. Nucleic Acids Res. 51, D647–D653 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Dai, C. et al. QSP: an open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. Water Res. 235, 119814 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Kurokawa, M. et al. Metagenomic thermometer. DNA Res. 30, dsad024 (2023).

  81. Shaw, J. & Yu, Y. W. Fast and robust metagenomic sequence comparison through sparse chaining with skani. Nat. Methods 20, 1661–1665 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rodriguez-R, L. M. et al. An ANI gap within bacterial species that advances the definitions of intra-species units. MBio 15, e0269623 (2024).

    Article  PubMed  Google Scholar 

  83. Pronk, L. J. U. & Medema, M. H. Whokaryote: distinguishing eukaryotic and prokaryotic contigs in metagenomes based on gene structure. Microb. Genom. 8, mgen000823 (2022).

  84. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tice, A. K. et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19, e3001365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Neely, C. J., Hu, S. K., Alexander, H. & Tully, B. J. The high-throughput gene prediction of more than 1,700 eukaryote genomes using the software package EukMetaSanity. Preprint at bioRxiv https://doi.org/10.1101/2021.07.25.453296 (2021).

  87. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Johansen, J. et al. Genome binning of viral entities from bulk metagenomics data. Nat. Commun. 13, 965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kieft, K., Adams, A., Salamzade, R., Kalan, L. & Anantharaman, K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res. 50, e83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Roux, S. et al. iPHoP: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (R Foundation for Statistical Computing, 2021).

  95. Patil, I. Visualizations with statistical details: the ‘ggstatsplot’ approach. J. Open Source Softw. 6, 3167 (2021).

    Article  Google Scholar 

  96. Hackl, T., Ankenbrand, M. J. & van Adrichem, B. gggenomes: a grammar of graphics for comparative genomics. GitHub https://github.com/thackl/gggenomes (2024).

  97. Michoud, G. et al. MAGs from glacier-fed streams. Zenodo https://doi.org/10.5281/zenodo.13890040 (2024).

  98. Michoud, G. Vanishing Glaciers MAGs R Code. GitHub https://github.com/michoug/VanishingGlaciersRcode (2024).

  99. Michoud, G., Bourquin, M. & Busi, S. B. Vanishing Glaciers MAGs pipeline. GitHub https://github.com/michoug/VanishingGlacierMAGs (2024).

Download references

Acknowledgements

The Vanishing Glaciers project is supported by The NOMIS Foundation (to T.J.B.) We thank A. McIntosh and L. Morris of New Zealand; J. Abermann and T. Juul-Pedersen of Greenland; O. Solomina and T. Kuderina Maratovna of Russia; V. Crespo-Pérez and P. Andino Guarderas of Ecuador; J. Yde and S. Leth Jørgensen of Norway; S. Sharma and P. Joshi of Nepal; N. Shaidyldaeva-Myktybekovna and R. Kenzhebaev of Kyrgyzstan; J. Nattabi Kigongo, R. Nalwanga and C. Masembe of Uganda; and M. Gonzlaléz and J. Luis Rodriguez of Chile for logistical support (see https://www.glacierstreams.ch for all institutions involved in the logistics of the expeditions). We particularly acknowledge the help of porters and guides in Nepal, Uganda and Kyrgyzstan; E. Oppliger for general laboratory support; and the Functional Genomics Centre Zurich for DNA sequencing. T.J.K. was also supported by the Charles University project PRIMUS/22/SCI/001. S.B.B. was supported by the Swiss National Science Foundation grant CRSII5_180241 to T.J.B.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

G.M. was responsible for conceptualization, methodology, software, data curation, investigation, formal analysis, visualization and writing of the original draft. H.P. was responsible for conceptualization, methodology, data curation, investigation, formal analysis, visualization and writing of the original draft. S.B.B. and M.B. were responsible for the methodology, software, data curation, investigation and formal analysis. T.J.K. performed conceptualization and writing of the original draft. A.G., L.E. and the V.G.F.T. developed methodology and conducted investigations. T.J.B. was responsible for conceptualization, methodology, investigation, writing of the original draft, supervision, project administration and funding acquisition.

Corresponding authors

Correspondence to Grégoire Michoud or Tom J. Battin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Katie Sipes, David Walsh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

World map depicting the mountain ranges where the Vanishing Glaciers Project sampled glacier-fed streams studied in the present paper.

Source data

Extended Data Fig. 2 Maximum likelihood phylogenetic tree of the archaeal MAGs.

The colors of the branches correspond to the taxonomical affiliation of the MAGs at the class level. Then, the presence of similar MAGs (ANI% > 95%) in another dataset (GFS rocks from New Zealand and Caucasus8). The gradient colors from blue to yellow show the normalized abundance of the different MAGs.

Source data

Extended Data Fig. 3 Comparative genomic organization of the mcrABDG cluster across the GFS_11005 (a) and GFS_3223 MAGs (b) and their closest relatives.

For each MAGs, only one contig is shown possessing the specified cluster. Similarities across genomes were calculated using minimap293. Representations were generated using gggenomes96.

Source data

Extended Data Fig. 4 Eukaryotic MAGs sourced from glacier-fed streams sampled by the Vanishing Glaciers project.

Maximum likelihood phylogenetic tree of the eukaryotic MAGs and reference genomes. The colors of the branches correspond to the taxonomic affiliation of MAGs at phylum level. The black color represents other branches of the eukaryotic tree of life. MAGs are indicated by the red dots. The gradient colors from blue to yellow show the normalized abundance of the different MAGs.

Source data

Extended Data Fig. 5

Differences in numbers (a,b) and relative abundance (c,d) of MAGs classified as specialists or generalists based on the levins index.

Source data

Extended Data Fig. 6

Barplot indicative of the predicted trophic state of the MAGs present in the different functional clusters either characterized as specialists (blue) or generalists (red).

Source data

Extended Data Fig. 7 Differences in estimated genome length between the pMAGs classified as specialists or generalists.

Mann-Whitney U Test showed a statistical difference between generalist and specialist genome length (U = 3.26 × 105, p = 1.42 × 10−9). Red circles show the medians while the box limits denote the 25th and 75th percentiles. The solid lines extend 1.5 times the interquartile range from these percentiles. The polygons represent density estimates of the data. The plot was made with ggstatsplot95.

Source data

Extended Data Fig. 8 Differences in genome length between the pMAGs present in the different functional clusters.

Red circles show the medians while the box limits denote the 25th and 75th percentiles. The solid lines extend 1.5 times the interquartile range from these percentiles. The polygons represent density estimates of the data. The plot was made with ggstatsplot95.

Source data

Extended Data Fig. 9

Presence of genes linked to photrophy per functional cluster.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Tables 1–6

Supplementary Table 1 General physicochemical characteristics of the different samples selected in this study. Table 2 General features and statistics of the metagenomes in glacier-fed streams. Table 3 General features and characteristics of the prokaryotic MAGs in glacier-fed streams. Table 4 General features and characteristics of the eukaryotic MAGs in glacier-fed streams. Table 5 Carotenoid genes coverage and originating MAG phylogeny. Table 6 List of genes potentially involved in the relationship between bacteria and algae in glacier-fed streams.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michoud, G., Peter, H., Busi, S.B. et al. Mapping the metagenomic diversity of the multi-kingdom glacier-fed stream microbiome. Nat Microbiol 10, 217–230 (2025). https://doi.org/10.1038/s41564-024-01874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01874-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing